The COVID-19 pandemic necessitated a pivot to online learning for many traditional, hands-on subjects such as anatomy. This, coupled with the increase in online education programmes, and the reduction of time students spend in anatomy dissection rooms, has highlighted a real need for innovative and accessible learning tools. This study describes the development of a novel 3-dimensional (3D), interactive anatomy teaching tool using structured light scanning (SLS) technology. This technique allows the 3D shape and texture of an object to be captured and displayed online, where it can be viewed and manipulated in real-time. Human bones of the upper limb, vertebrae and whole skulls were digitised using SLS using Einscan Pro2X/H scanners. The resulting meshes were then post-processed to add the captured textures and to remove any extraneous information. The final models were uploaded into Sketchfab where they were orientated, lit and annotated. To gather opinion on these models as effective teaching tools, surveys were completed by anatomy students (n=35) and anatomy educators (n=8). Data was collected using a Likert scale response, as well as free text answers to gather qualitative information. 3D scans of the scapula, humerus, radius, ulna, vertebrae and skull were successfully produced by SLS. Interactive models were produced via scan data in Sketchfab and successfully annotated to provide labelled 3D models for examination. 94% of survey respondents agreed that the interactive models were easy to use (n=35, 31% agree and 63% strongly agree) and 97% agreed that the 3D interactive models were more useful than 2D images for learning bony anatomy (n=35; 26% agree and 71% strongly agree). This initial study has demonstrated a suitable proof-of-concept for SLS technology as a useful technique for producing 3D interactive online tools for learning and teaching bony anatomy. Current studies are focussed on determining the SLS accuracy and the ability of SLS to capture soft tissue/joints. We believe that this tool will be a useful technique for generating online 3D interactive models to study orthopaedic anatomy.
En bloc resection for primary bone tumours and isolated metastasis are complex surgeries associated with a high rate of adverse events (AEs). The primary objective of this study was to explore the relationship between frailty/sarcopenia and major perioperative AEs following en bloc resection for primary bone tumours or isolated metastases of the spine. Secondary objectives were to report the prevalence and distribution of frailty and sarcopenia, and determine the relationship between these factors and length of stay (LOS), unplanned reoperation, and 1-year postoperative mortality in this population. This is a retrospective study of prospectively collected data from a single quaternary care referral center consisting of patients undergoing an elective en bloc resection for a primary bone tumour or an isolated spinal metastasis between January 1st, 2009 and February 28th, 2020. Frailty was calculated with the modified frailty index (mFI) and spine tumour frailty index (STFI). Sarcopenia, determined by the total psoas area (TPA) vertebral body (VB) ratio (TPA/VB), was measured at L3 and L4. Regression analysis produced ORs, IRRs, and HRs that quantified the association between frailty/sarcopenia and major perioperative AEs, LOS, unplanned reoperation and 1-year postoperative mortality. One hundred twelve patients met the inclusion criteria. Using the mFI, five patients (5%) were frail (mFI ³ 0.21), while the STFI identified 21 patients (19%) as frail (STFI ³ 2). The mean CT ratios were 1.45 (SD 0.05) and 1.81 (SD 0.06) at L3 and L4 respectively. Unadjusted analysis demonstrated that sarcopenia and frailty were not significant predictors of major perioperative AEs, LOS or unplanned reoperation. Sarcopenia defined by the CT L3 TPA/VB and CT L4 TPA/VB ratios significantly predicted 1-year mortality (HR of 0.32 per one unit increase, 95% CI 0.11-0.93, p=0.04 vs. HR of 0.28 per one unit increase, 95% CI 0.11-0.69, p=0.01) following unadjusted analysis. Frailty defined by an STFI score ≥ 2 predicted 1-year postoperative mortality (OR of 2.10, 95% CI 1.02-4.30, p=0.04). The mFI was not predictive of any clinical outcome in patients undergoing en bloc resection for primary bone tumours or isolated metastases of the spine. Sarcopenia defined by the CT L3 TPA/VB and L4 TPA/VB and frailty assessed with the STFI predicted 1-year postoperative mortality on univariate analysis but not major perioperative AEs, LOS or reoperation. Further investigation with a larger cohort is needed to identify the optimal measure for assessing frailty and sarcopenia in this spine population.
We present a complete audit cycle of Emergency Department management of paediatric clavicle fractures at Derriford Hospital. Local guidelines divide the clavicle into three zones. Fractures with minimal displacement in the middle 3/5th heal in the majority of cases without complication and can be discharged without need for follow up, provided parents are adequately educated. An initial audit cycle of 63 cases identified short comings in adherence to the guidelines. These included: Unnecessary fracture clinic follow up of ‘Zone 2’ fractures in 85% and omission of written advice in 86%. The results were circulated, ‘aide memoir’ icons were added to the department's computer coding system, staff teaching sessions were organised and a patient advice sheet was produced. Following the implementation of changes, a 23 case re-audit showed fewer unnecessary referrals to fracture clinic (17% vs. 85%) and improvements in the number of parents being given written advice (43% vs. 14%). Staff training, provision of information leaflets and changes to the ED coding system dramatically improved the adherence to hospital guidance. This resulted in standardisation of care, fewer unnecessary appointments and cost savings to the trust. Following this audit, a telephone survey was completed to assess parent's satisfaction with their treatment.
Plymouth Hospitals NHS Trust developed a pelvic and acetabular service in 2008, with the aim to provide a tertiary service for Devon and East Cornwall. We describe the demographics of the patients, referral and fracture patterns, the operative management undertaken and complications seen in a newly developed tertiary pelvic and acetabular service in the South West. Over 150 patients have been referred and treated, with follow up in a specialised tertiary clinic. Clinical scoring and radiological follow up were performed, and complications recorded. Several difficulties and problems were encountered in the development of the service including training issues, equipment availability, surgeon availability, referral pathways and theatre time. The presentation will describe the clinical results of the service, along with the logistical obstacles encountered in setting up a new service.
Military patients have high functional requirements of the upper limb and may have lower pre-operative PROM scores than civilian patients i.e. their function is high when benchmarked, but still insufficient to perform their military role thereby mandating surgery. Our aim was to compare the pre-operative Oxford Shoulder Instability Scores in military and civilian patients undergoing shoulder stabilisation surgery. We undertook a prospective, blinded cohort-controlled study (OCEBM Level 3b). The null hypothesis was that there was no difference in the Oxford Shoulder Instability Scores between military and civilian groups. A power calculation showed that 40 patients were required in each group to give 95% power with 5% significance. A clinical database (iParrot, ByResults Ltd., Oxford, UK) was interrogated for consecutive patients undergoing shoulder stabilisation surgery at a single centre. The senior author - blinded to the outcome score - matched patients according to age, gender and diagnosis. Statistical analysis showed the data to be normally distributed so a paired samples t-test was used to compare the two groups. 110 patients were required to provide a matched cohort of 80 patients. There were 70 males and 10 females. Age at the time of surgery was 16–19 yrs (n=6); 20–24yrs (n=28); 25–29 (n=16); 30–34 (n=12); 35–39 (n=12); 40–44 (n=6). 72 patients (90%) had polar group one and 8 patients (10%) had polar group two instability. The mean Oxford Shoulder Instability Score in the civilian group was 17 and the in military group was 18. There was no statistical difference between the two groups (p=0.395). This study supports the use the Oxford Shoulder Instability Score to assess military patients with shoulder instability.
Skills simulation is increasingly used as a training tool in postgraduate surgical training. Trainee's perception of the value of this experience has not previously been investigated. Our aim was to investigate the value of surgical simulation training delivered by an arthroscopy skills course. We constructed a subject-specific, self-assessment questionnaire based around the ISCP Peer Assessment Tool. The questionnaire was administered to candidates before and after attending the Plymouth Arthroscopy Skills Course. Participant demographic data was recorded. Questionnaire data was interrogated to give an overview of the course, as well as the benefit of site-specific skills stations. Statistical analysis showed the data to be normally distributed. The paired T-test was used to compare mean values. Twelve surgical trainees attended the course – CT2 trainees (n=4); ST3 trainees (n=7); ST4 trainee (n=1). 11 candidates completed both administered questionnaires giving a 92% response rate. The global mean score at the beginning of the course was 2.39. The global mean score at the end of the course was 3.90. The mean improvement was 1.51 (p<0.01; 95% CI = 0.96–2.07). Skill station specific scores all showed improvement with the greatest effect in wrist arthroscopy. CT trainees had a lower mean score compared to ST trainees. Both groups completed the course with similar mean scores. This study shows that arthroscopy simulation improves trainee-reported ratings of surgical skill. It also shows that less experienced candidates derived the greatest benefit from the training. Further research is required to compare self-assessed performance against objective benchmarks using validated assessment tools.
Skills simulation is increasingly used as a training tool in postgraduate surgical training. Trainee's perception of the value of this experience has not previously been investigated. The aim of this investigation was to investigate the value of surgical simulation training delivered by an arthroscopy skills course. We constructed a subject-specific, self-assessment questionnaire based around the ISCP Peer Assessment Tool. The questionnaire was administered to candidates before and after attending the Plymouth Arthroscopy Skills Course. Participant demographic data was recorded. Questionnaire data was interrogated to give an overview of the course, as well as the benefit of site-specific skills stations. Statistical analysis showed the data to be normally distributed. The paired T-test was used to compare mean values. Twelve surgical trainees attended the course – CT2 trainees (n=4); ST3 trainees (n=7); ST4 trainee (n=1). 11 candidates completed both administered questionnaires giving a 92% response rate. The global mean score at the beginning of the course was 2.39. The global mean score at the end of the course was 3.90. The mean improvement was 1.51 (p<0.01; 95% CI= 0.96-2.07). Skill station specific scores all showed improvement with the greatest effect in wrist arthroscopy. CT trainees had a lower mean score compared to ST trainees. Both groups completed the course with similar mean scores. This study shows that arthroscopy simulation improves trainee-reported ratings of surgical skill. It also shows that less experienced candidates derived the greatest benefit from the training. Further research is required to compare self-assessed performance against objective benchmarks using validated assessment tools.
Military patients have high functional requirements of the upper limb and may have lower pre-operative PROM scores than civilian patients i.e. their function is high when benchmarked, but still insufficient to perform their military role thereby mandating surgery. Our aim was to compare the pre-operative Oxford Shoulder Instability Scores in military and civilian patients undergoing shoulder stabilisation surgery. We undertook a prospective, blinded cohort-controlled study (OCEBM Level 3b). The null hypothesis was that there was no difference in the Oxford Shoulder Instability Scores between military and civilian groups. A power calculation showed that 40 patients were required in each group to give 95% power with 5% significance. A clinical database (iParrot, ByResults Ltd., Oxford, UK) was interrogated for consecutive patients undergoing shoulder stabilisation surgery at a single centre. The senior author - blinded to the outcome score - matched patients according to age, gender and diagnosis. Statistical analysis showed the data to be normally distributed so a paired samples t-test was used to compare the two groups. 110 patients were required to provide a matched cohort of 80 patients. There were 70 males and 10 females. Age at the time of surgery was 16-19yrs (n=6); 20-24yrs (n=28); 25-29 (n=16); 30-34(n=12); 35-49(n=12); 40-44(n=6). 72 patients (90%) had polar group one and 8 patients (10%) had polar group two instability. The mean Oxford Shoulder Instability Score in the civilian group was 17 and the in military group was 18. There was no statistical difference between the two groups (p=0.395). This study supports the use the Oxford Shoulder Instability Score to assess military patients with shoulder instability.
There are 20 surviving patients with an average follow up of 41.5 months (range 6 to 111 months), 15 of who had malignant tumors. None of these patients have evidence of local recurrence and one has evidence of systemic disease. The health related quality of life, using the SF-36, shows acceptable morbidity of these procedures (PCS=37.73 ± 11.52, MCS=51.69 ± 9.54).