The Phantom based Computer assisted orthopaedic surgical system (CAOSS) has been developed collaboratively by the University of Hull and the Hull Royal Infirmary, to assist in operations like dynamic hip screw fixation. Here we present summary of our system. CAOSS comprises a personal computer based computer system, a frame grabber with video feed from a C-arm image intensifier, an optical tracking system and a radiolucent registration phantom which consists of an H arrangement of 21 metal balls. The phantom is held in position by the optically tracked end-effector. Knowing the optical position of the phantom, a registration algorithm calculates the position of C-arm in coordinate space of the optical tracking system. Computer based planning uses an anteroposterior (AP) and lateral image of the fracture. Marks are placed on the 2D projections of femoral shaft, neck and head on the computer screen, which are then used to create 3D surgical plan. The computer then plans a trajectory for the guide wire of DHS. The depth of the drill hole is also calculated. The trajectory is then shown on both AP and lateral images on the screen. CAOSS meets all the requisite of electrical and electromagnetic radiation standards for medical equipment. There has been extensive validation using software simulation, performance evaluation of system components, extensive laboratory trials on plastic bones. The positional accuracy was shown to be within 0.7mm and angular accuracy to be within 0.2°. The system was also validated using Coordinate Measurement Machine. Our system has the unique feature of the registration phantom which provides accurate registration of the fluoroscopic image.