Femoral heads made from zirconia-toughened alumina (ZTA) are the most advanced bioceramic available for total hip arthroplasty. ZTA's superior mechanical properties result from the polymorphic transformation of its zirconia (ZrO2) phase in the presence of a propagating crack. BIOLOX®Introduction
Materials and Methods
The longevity of highly cross-linked polyethylene (XLPE) bearings is primarily determined by its resistance to long-term oxidative degradation. Addition of vitamin E to XLPE is designed to extend Two sets of four types of ceramic femoral heads, consisting of three oxides (Al2O3 BIOLOX®Introduction
Materials and Methods
Due to its remarkable stoichiometric flexibility and surface chemistry, hydroxyapatite (HAp) is the fundamental structural material in all vertebrates. Natural HAp's properties inspired an investigation into silicon nitride (Si3N4) to see if similar functionality could be engineered into this bioceramic. Biological and Four groups of Si3N4 discs, Ø12.7×1.0mm, (Amedica Corporation, Salt Lake City, UT USA) were subjected to surface treatments: (i) “As-fired;” (ii) HF-etched (5% HF solution for 45 s); (iii) Oxidized (1070°C for 7 h); and (iv) Nitrogen-annealed (1400°C for 30 min, 1.1 bar N2 gas).1 Titanium alloy discs (Ti6Al4V, ASTM F136) were used as a control group. SaOS-2 cells cultured for 24 h at 37°C were deposited (5×105 cells/ml) and incubated on the UV sterilized discs in an osteogenic medium for 7 days at 37°C. Cell proliferation was monitored using scanning electron and laser microscopy. The Receptor Activator of NF-kB Ligand (sRANKL) and the insulin growth factor 1 (IGF-1) were used to evaluate osteoclast formation and cell proliferation efficiency, respectively. Introduction
Materials and Methods
Periprosthetic infections are leading causes of revision surgery resulting in significant increased patient comorbidities and costs. Considerable research has targeted development of biomaterials that may eliminate implant-related infections.1 This Several surface treated silicon nitride (Si3N4, Introduction
Materials and Methods
Oxide-based alumina (Al2O3) is used to manufacture femoral heads for total hip arthroplasty (THA). Silicon nitride (Si3N4) is a non-oxide ceramic used to make spinal implants. Ceramic materials are believed to be bioinert, ( Four self-mated Ø28 mm diameter Al2O3 femoral heads (n=2 each of BIOLOX®Introduction
Materials and Methods
In total hip arthroplasty (THA), polyethylene (PE) liner oxidation leads to material degradation and increased wear, with many strategies targeting its delay or prevention. However, the effect of femoral head material composition on PE degradation for ceramic-PE articulation is yet unknown. Therefore, using two different ceramic materials, we compared PE surface alterations occurring during a series of standard ceramic-PE articulation tests. Ceramic-PE THA bearings were tested in a simulator, using ASTM F2003-02, ASTM F1714-96 (2013) and ISO 14242:1–3 standards. Acetabular liners (Apex-Link PolyTM, OMNI Life Science, East Taunton, MA, USA) were articulated against Ø28 mm Si3N4 femoral heads (Amedica Corp., Salt Lake City, UT, USA). For comparison, ArCom® PE liners (Biomet Inc. Warsaw, IN, USA) were also tested against Ø28 mm zirconia-toughened alumina (ZTA) femoral heads (BIOLOX®Introduction
Materials and Method
The A newly developed Raman microprobe-assisted indentation method was applied to evaluate and compare surface fracture toughness mechanisms operative in Si3N4 (Amedica Corporation, Salt Lake City, UT, USA), Al2O3 and ZTA (BIOLOX® Introduction
Materials
Silicon nitride (Si3N4) is a ceramic material presently implanted during spine surgery. It has a fortunate combination of material properties such as high strength and fracture toughness, inherent phase stability, scratch resistance, low wear, biocompatibility, hydrophilic behavior, easier radiographic imaging and resistance to bacterial biofilm formation, all of which make it an attractive choice for orthopaedic applications beyond spine surgery. Unlike oxide ceramics, ( In the present study, a Si3N4 bioceramic formulation was exposed to thermal, chemical, and mechanical treatments in order to induce changes in surface composition and features. The treatments included grinding and polishing, etching in hydrofluoric acid solution, and heating in nitrogen or air. Resulting surfaces were characterized using a variety of microscopy techniques to assess morphology. Surface chemical and phase composition were determined using x-ray photoelectron and Raman spectroscopy, respectively. Streaming potential measurements evaluated surface charging, and sessile water drop techniques assessed wetting behavior.Introduction
Methods
According to the knee simulator test results in 1970s, the total decrease in thickness of UHMWPE tibial tray in combination with ceramic femoral component [F-Comp] was less than one tenth as that of the combination with metal [ The retrieved TKP was implanted in 1979, and retrieved on January 9th in 2002. This TKP consisted of an alumina ceramic F-Comp and a UHMWPE tray combined with a alumina ceramic tibial component. Observations of the surface of alumina F-Comp and UHMWPE tray were carried out using SEM. Shape of UHMWPE tray was determined three-dimensionally. Comparing the result with original shape based on the product’s plan, liner wear and volumetric wear were calculated. Oxidation index was determined by Fourier transform infrared spectrophotometry. Alumina F-Comp did not have any scratch on the surface by seeing with naked eye. UHMWPE tray had deformation and scratches obviously. The liner wear rate was 37 micrometer/year and volumetric wear rate was 18.8 mm3/year. The oxidation indexes were 0.6 in the unworn area, 1.2 in the worn area and 0.2 in the inner area. SEM observations of the F-Comp demonstrated no scratch or pit. In contrast, many scratches were clearly observed on the UHMWPE tray. However, higher magnification observations did not demonstrate severe wear, which was shown on the wear analysis of a metallic F-Comp. Oxidation degradation is a problem to solve. However, the low wear rate and mild wear pattern demonstrate that ceramic F-Comp reduced UHMWPE wear.