header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 15 - 15
10 May 2024
Longoni A Arnold S Major GS Jiang A Wise L Hooper G Kieser D Woodfield T Rnjak-Kovacina J Lim K
Full Access

INTRODUCTION

Stimulation of angiogenesis via the delivery of growth factors (GFs) like vascular endothelial growth factor (VEGF) is a promising strategy for the treatment of avascular necrosis (AVN). Tyraminated poly-vinyl-alcohol hydrogels (PVA-Tyr), which have the ability to covalently incorporate GFs, were proposed as a platform for the controlled delivery of therapeutic levels VEGF to the necrotic areas[1]. Nevertheless, PVA hydrophilicity and bioinertness limits its integration with the host tissues. The aim of this study was to investigated the effectiveness of incorporating gelatin, an FDA-approved, non-immunogeneic biomaterial with biological recognition sites, as a strategy to facilitate blood vessels invasion of PVA-Tyr hydrogels and to restore the vascular supply to necrotic tissues.

METHODS

Progressively higher gelatin concentrations (0.01–5wt%) were incorporated in the PVA-Tyr network. Hydrogel physico-chemical properties and endothelial cell attachment were evaluated. Afterwards, the capability of the released VEGF and gelatin to promote vascularization was evaluated via chorioallantoic membrane (CAM) assay. VEGF-loaded PVA-Tyr hydrogels with or without gelatin (n=7) were implanted in a subcutaneous mouse model for 3 weeks. Vascularization (CD31+ cells) and cell infiltration (H&E) were evaluated. Finally, AVN was induced in 6 weeks old male piglets as previously described [2]. A transphyseal hole (3mm) was drilled and PVA-Tyr hydrogels with 1% gelatin were delivered in the defects. Piglets were euthanized after 4 weeks and microCT analysis was performed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 11 - 11
1 Nov 2022
Bommireddy L Davies-Traill M Nzewuji C Arnold S Haque A Pitt L Dekker A Tambe A Clark D
Full Access

Abstract

Introduction

There is little literature exploring clinical outcomes of secondarily displaced proximal humerus fractures. The aim of this study was to assess the rate of secondary displacement in undisplaced proximal humeral fractures (PHF) and their clinical outcomes.

Methods

This was a retrospective cohort study of undisplaced PHFs at Royal Derby Hospital, UK, between January 2018-December 2019. Radiographs were reviewed for displacement and classified according to Neer's classification. Displacement was defined as translation of fracture fragments by greater than 1cm or 20° of angulation. Patients with pathological, periprosthetic, bilateral, fracture dislocations and head-split fractures were excluded along with those without adequate radiological follow-up.