header advert
Results 1 - 20 of 355
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 99 - 99
1 Dec 2020
Gouk C Steele C Hackett N Tudor F
Full Access

Introduction. The transition from resident to registrar constitutes a steep learning curve in most medical practitioners’ careers, regardless of speciality. We aimed to determine whether a six-week orthopaedic surgical skills course could increase resident skills and confidence prior to transitioning to orthopaedic registrar within the Gold Coast University Hospital, Queensland, Australia. Materials. Unaccredited registrars, orthopaedic trainees, and orthopaedic consultants, through a departmental peer reviewed process and survey, developed a six-session course (“Registrar Academy”) that included basic knowledge and essential practical skills training for residents with an interest in becoming orthopaedic registrars. This course was implemented over a 3-month period and assessed. Mixed method quantitative and qualitative evidence was sought via a 14-item and 18-item Likert scale questionnaire coupled with open-ended questions. Ethical approval was granted by our institutions Human Research and Ethics Comittee, reference no.: HREC/16/QGC336. Results/Discussion. Results were qualitatively synthesised using quantitative and qualitative data. Thirteen residents participated in the course. All residents agreed to statements indicating they felt unprepared to work as an orthopaedic registrar and were not confident in performing various core tasks required. After completing the course, residents indicated greater confidence or comfort in all these areas and felt better prepared for the transition to registrar. There was broad approval of the course among participants. Every participant who completed the final questionnaire agreed or strongly agreed that they enjoyed the course and that it taught usable, reproducible practical skills and increased their orthopaedic knowledge. This group also uniformly agreed or strongly agreed that the course improved their patient care and patient safety. Conclusion. Residents feel unprepared for their transition to orthopaedic registrar and lack confidence in several core competencies. A supplemental “Registrar Academy” within an institution is an effective way to improve knowledge, confidence, and practical skills for residents wishing to transition to a registrar position


Bone & Joint Research
Vol. 8, Issue 10 | Pages 481 - 488
1 Oct 2019
Nathan K Lu LY Lin T Pajarinen J Jämsen E Huang J Romero-Lopez M Maruyama M Kohno Y Yao Z Goodman SB

Objectives. Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. Methods. A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. Results. We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. Conclusion. These results suggest that: 1) a 72- to 96-hour proinflammatory environment is critical for optimal matrix mineralization; and 2) there are immunological differences in this coculture environment due to sex. Optimizing immunomodulation during fracture healing may enhance and expedite the bone regeneration response. These findings provide insight into precise immunomodulation for enhanced bone healing that is sex-specific. Cite this article: K. Nathan, L. Y. Lu, T. Lin, J. Pajarinen, E. Jämsen, J-F. Huang, M. Romero-Lopez, M. Maruyama, Y. Kohno, Z. Yao, S. B. Goodman. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res 2019;8:481–488. DOI: 10.1302/2046-3758.810.BJR-2018-0231.R2


Bone & Joint Research
Vol. 10, Issue 5 | Pages 310 - 320
3 May 2021
Choi J Lee YS Shim DM Lee YK Seo SW

Aims. Bone metastasis ultimately occurs due to a complex multistep process, during which the interactions between cancer cells and bone microenvironment play important roles. Prior to colonization of the bone, cancer cells must succeed through a series of steps that will allow them to gain migratory and invasive properties; epithelial-to-mesenchymal transition (EMT) is known to be integral here. The aim of this study was to determine the effects of G protein subunit alpha Q (GNAQ) on the mechanisms underlying bone metastasis through EMT pathway. Methods. A total of 80 tissue samples from patients who were surgically treated during January 2012 to December 2014 were used in the present study. Comparative gene analysis revealed that the GNAQ was more frequently altered in metastatic bone lesions than in primary tumour sites in lung cancer patients. We investigated the effects of GNAQ on cell proliferation, migration, EMT, and stem cell transformation using lung cancer cells with GNAQ-knockdown. A xenograft mouse model tested the effect of GNAQ using micro-CT analyses and histological analyses. Results. GNAQ-knockdown showed down-regulation of tumour growth through mitogen-activated protein kinase (MAPK) signalling in lung cancer cells, but not increased apoptosis. We found that GNAQ-knockdown induced EMT and promoted invasiveness. GNAQ-knockdown cells injected into the bone marrow of murine tibia induced tumour growth and bone-to-lung metastasis, whereas it did not in control mice. Moreover, the knockdown of GNAQ enhanced cancer stem cell-like properties in lung cancer cells, which resulted in the development of resistance to chemotherapy. Conclusion. The present study reveals that the GNAQ-knockdown induced cancer stem cell-like properties. Cite this article: Bone Joint Res 2021;10(5):310–320


Bone & Joint Open
Vol. 1, Issue 6 | Pages 222 - 228
9 Jun 2020
Liow MHL Tay KXK Yeo NEM Tay DKJ Goh SK Koh JSB Howe TS Tan AHC

The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented challenges to healthcare systems worldwide. Orthopaedic departments have adopted business continuity models and guidelines for essential and non-essential surgeries to preserve hospital resources as well as protect patients and staff. These guidelines broadly encompass reduction of ambulatory care with a move towards telemedicine, redeployment of orthopaedic surgeons/residents to the frontline battle against COVID-19, continuation of education and research through web-based means, and cancellation of non-essential elective procedures. However, if containment of COVID-19 community spread is achieved, resumption of elective orthopaedic procedures and transition plans to return to normalcy must be considered for orthopaedic departments. The COVID-19 pandemic also presents a moral dilemma to the orthopaedic surgeon considering elective procedures. What is the best treatment for our patients and how does the fear of COVID-19 influence the risk-benefit discussion during a pandemic? Surgeons must deliberate the fine balance between elective surgery for a patient’s wellbeing versus risks to the operating team and utilization of precious hospital resources. Attrition of healthcare workers or Orthopaedic surgeons from restarting elective procedures prematurely or in an unsafe manner may render us ill-equipped to handle the second wave of infections. This highlights the need to develop effective screening protocols or preoperative COVID-19 testing before elective procedures in high-risk, elderly individuals with comorbidities. Alternatively, high-risk individuals should be postponed until the risk of nosocomial COVID-19 infection is minimal. In addition, given the higher mortality and perioperative morbidity of patients with COVID-19 undergoing surgery, the decision to operate must be carefully deliberated. As we ramp-up elective services and get “back to business” as orthopaedic surgeons, we have to be constantly mindful to proceed in a cautious and calibrated fashion, delivering the best care, while maintaining utmost vigilance to prevent the resurgence of COVID-19 during this critical transition period. Cite this article: Bone Joint Open 2020;1-6:222–228


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 49 - 49
1 Apr 2018
Lv ZT Li M Chen AM
Full Access

BACKGROUND. Diffuse noxious inhibitory control (DNIC) is impaired in people with chronic pain such as knee osteoarthritis (KOA), which may predict the risk of acute-to-chronic pain transition. Electroacupuncture (EA) is effective in relieving pain in patients with KOA. However, whether EA may inhibit acute-to-chronic pain transition of KOA has not been systematically examined. METHODS. This was a multicenter, three-arm parallel, single-blind randomized controlled trial involving a total of 450 patients with KOA. This study was approved by the Chinese Ethics Committee of Registering Clinical Trials (reference: ChiECRCT-20140035) and registered with Chinese Clinical Trial Registry (ChiCTR-ICR-14005411). Patients were divided into three groups based on EA current intensity: strong EA (>2mA), weak EA (<0.5mA) and sham EA (none acupoint). Treatments consisted of five sessions per week, for two weeks. Primary outcome measures were visual analog scale (VAS) and DNIC function. RESULTS. One week of EA had no clinical important improvement in VAS and DNIC function in all three groups (P>0.05). After 2 weeks” treatment, changes from baseline showed that VAS (strong EA: 2.97, SD 0.10, P<0.0001; weak EA: 2.75, SD 0.15, P <0.0001; sham EA: 1.19, SD 0.14, P<0.0001) and DNIC (strong EA: −14.85, SD 0.16, P<0.0001; weak EA: −4.75, SD 0.28, P<0.0001; sham EA: −1.43, SD 0.24, P<0.0001) were significantly improved in all three groups. Compared with sham EA, weak EA (3.8, 95%CI 3.45 to 4.15) and strong EA (13.54, 95%CI 13.23 to 13.85) were better in improving DNIC function. Compared with weak EA, strong EA were better in enhancing DNIC function (9.73, 95%CI 9.44 to 10.02), as well as in reducing VAS. CONCLUSIONS. In conclusion, EA should be administered 2 weeks to exerting significant effect on KOA. Strong EA was better than weak or sham EA in alleviating the intensity of pain and inhibiting the acute-to-chronic pain transition of KOA


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 224 - 224
1 Mar 2010
Wong M Tai K Qin L Leung K
Full Access

Bone tendon junction (BTJ) healing after injury is often slow, without restoration of fibrocartilage transition zone. Fibrocartilage formation has been observed near articular cartilage. It was hypothesised that articular cartilage interposition could stimulate fibrocartilage transition zone regeneration and improve BTJ healing. Partial patellectomy repair was performed in goat. Articular cartilage harvested from excised patella segment was interposed between the patella and patellar tendon during repair. No cartilage interposition was used in control group. Samples were harvested at six, 12, and 24 weeks for histological examination (n=6 each). The histological images were digitised and analyzed using an image analysis system. Healing progress was assessed by the amount of new bone formation and fibrocartilage transition zone regeneration. Quantitative data were analyzed using SPSS version 14.0. Statistic al significance level was set at p < 0.05. There was progressive increase in maximum new bone length and area of new bone formed with time (p< 0.05, Kruskal-Wallis test). No difference was observed between treatment groups. Articular cartilage interposition resulted in more fibrocartilage regeneration and higher proteoglycan uptake at all time points. At 24 weeks, length of fibrocartilage formed measured 7760 ± 629 μm with articular cartilage interposition, compared with 787± 274 μm in control (p = 0.002, Mann-Whitney test). Safranin O length measured 3301 ± 1236 μm with articular cartilage interposition, compared with 277 ± 187 μm in control (p = 0.03, Mann-Whitney test). Autologous articular cartilage interposition stimulates fibrocartilage transition zone regeneration in BTJ repair without affecting bone formation


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 155 - 156
1 May 2011
Boymans T Heyligers I Grimm B
Full Access

Due to demographic changes patients > 80yrs (octogenarians) are a rapidly growing group in total hip arthroplasty (THA). Stem design, choice, sizing and surgical insertion are more important in these patients as complications such as fractures are critical. Age and gender driven differences regarding canal shape (flare index, CFI), cortical wall thickness (WT) and bone mineral density (BMD) have been studied before only in isolation. Using CT, this study aims to investigate these parameters in combination and in 3D with a focus on the very elderly, identifying the regions critical for THA. High-resolution CT-scans (1mm slices) of 168 femora (M/F=100/68) were analyzed in 3D (Mimics V12). Flaring indices were based on the dimensions measured 20mm proximal to the lesser trochanter (LT) and 60mm distal to LT: intramedullary surface area (3D-CFI), frontal/lateral planes (2D-CFI) and flaring of the 4 sides medial (med), lateral (lat), anterior (ant), posterior (post) (1D-CFI). WT was calculated subtracting periosteal and endosteal dimensions and BMD was measured in Hounsfield Units (HU). An octogenarian group (80+: n=117, mean age 84yrs [80–105]) was compared to a typical THA age group (80−: n=51, mean age 68yrs [39–79]). Age and gender had significant effects on several parameters but at different levels, e.g. 2D frontal CFI was more influenced by the small age difference (80+ vs 80−=12%, p< 0.01) than gender (F vs M=2%). However, regarding lateral canal width, gender (F vs M=7%, p< 0.01), was more influential than age (80+ vs 80−=3%). The age-related changes on the shape occurred in 3D (3D-CFI 80+ vs 80−=23%, p< 0.01), but were asymmetrical between the 4 sides (e.g. 1D-CFI 80+ vs 80−: med=11%, p< 0.01) vs ant=27%, p< 0.01). Age and gender did not only effect shape, but also cortical WT, e.g. proximally octogenarian females had 35% less WT than the typical THA age group while males only had 14% lower WT (p< 0.01). Age, gender and shape asymmetry was also reflected in BMD distribution. on the medial side, the BMD gender difference in the octogenarians was small (=1%, p=0.61) but high on the anterior side (12%, p< 0.01). The most critical configurations for the octogenarians were found proximally on the posterior side with the lowest WT, lowest BMD and largest gender difference. The complex transition of the proximal femur affects shape, WT and BMD, continues in the very elderly and differs between genders. It produces femoral canals and bone stock different from the typical THA patient group. Conventional stems may not fit properly. Surgical implant choice, sizing and templating should consider this asymmetric age plus gender effect on shape, WT and BMD to avoid complications such as periprosthetic fracture, excessive migration or luxation in this vulnerable age group. A major risk zone is the posterior wall where age transition and gender differences are high and WT and BMD low


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 57 - 57
1 Jul 2014
Kishimoto K Itoi E
Full Access

Summary Statement. Paraspinal muscle contain higher proportion of slow-twich fibers. The fixation of the rat tail induced transition of muscle fiber types in the paravertebral muscles characterised by the decrease in the proportion of the slow type myosin heavy chain. Introduction. Lumbar degenerative kyphosis often accompanies back pain, easy fatigability, fatty degeneration and atrophy of back muscles. There are two types of skeletal muscle fibers according to oxidative activities: slow-twich (Type 1) and fast-twitch (Type 2) fibers. Type 2 fibers were subdivided into three types: Type 2A, 2B and 2D/X. Each fiber type primarily expresses a specific isoform of myosin heavy chain (MHC). It has been known that back muscles contain higher proportion of MHC type 1. However, the impact of kyphosis on the proportion of fiber types in the paravertebral muscles has not been fully understood. The aim of this study is to analyze the transition of muscle fiber types after kyophotic or straight fixation using a rat tail model. Methods. A rat tail was fixed in straight or kyphotic position (straight or kyphosis group) by a custom-made external fixator and wires. A group of animals which underwent only pierced wounds in their tails served as control. The gene expression profiles of isoforms of MHCs in dorsal coccygeal muscles were analyzed by quantitative RT-PCR. The fiber types of muscles were assessed using SDS-PAGE. Band densities of silver-stained gel were quantified. Results. At first, the gene expression profiles of MHCs and protein expression in the dorsal coccygeal muscles were compared with tibilis anterior and gastrocunemius muscles. Higher proportion of MHC type 1 gene and protein expression were confirmed in the dorsal coccygeal muscles than tibialis anterior and gastrocuneimus muscles. MHC type 2B protein expression was not detected in dorsal coccygeal muscles. Next, coccygeal muscles after straight or kyphotic fixation were analyzed and compared with control. Gene expression of MHC type 1 was decreased at 7 and 28 days after fixation in straight and kyphosis group. The significant difference was seen at 28 days in kyphosis group. The band densities of MHC protein type 1 and 2A plus 2D/X were decreased in both straight and kyophosis groups at 28 days after fixation while sample volume was adjusted by wet wight of dissected coccygeal muscles. The mean proportion of MHC protein type 1 separated by SDS-PAGE were decreased in straight and kyphosis group. The difference was significant in straight group. Discussion. Our results demonstrated that the fixation of the rat tail induced transition of muscle fiber types in the paravertebral muscles characterized by the decrease in the proportion of the MHC type 1. Back muscles are required to contract continuously to keep posture. Slow-twitch fibers in back muscle contribute for continuous contraction. Slow-twitch fibers utilise energy efficiently by oxidative process while fast-twitch fibers mainly consume glucose through glycolysis producing lactate acid. Not only decreased amount of MHC but also decreased proportion of MHC type 1 might be the reason of easy fatigability in lumbar degenerative kyphosis. The limitations of this study is the difference between human paravertebral and rat coccygeal muscles and short duration of observation


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 309 - 309
1 Jul 2011
Alsousou J Jenks T Bouamra O Lecky F Willett K
Full Access

Background: It has been suggested that the transition phases of implementing daylight saving time (DST) may impact on serious or fatal injuries sustained as the result of road traffic collision (RTC). The aim of this study is to explore the effects of transitions into and out of daylight saving time on the incidence of such injuries. Methods: This is a comparative observational study of 11-year of data submitted prospectively to the Trauma Audit Research Network (TARN) between 1996 and 2006. Data for 4 weeks before and after time transition in spring and autumn of each year was collected. The time periods selected reflect those hours with maximum light level changes due to time alterations (2-hour around sunrise and 4-hour around sunset). Travellers outside those hours are unlikely to be affected by the changes. Results: Out of 55,826 incidents in England and Wales, TARN returned 1296 incidents meeting the above time criteria, of which 282 involved a fatality. Overall, there were more crashes in autumn (845, 65.2%) comparing to spring period (451, 34.8%), with the majority occurring around sunset (1057, 81.5%). RTC related injuries at the onset of DST in spring showed a significant increase up to 14 days post time change (P=0.029), with the majority of the increase occurring at sunset. The highest increases occurred within the fatal incidents group (P=0.0019) and affected mainly the pedestrian subgroup (P=0.013). Changes in the incidence of injuries around the change back to Greenwich Mean Time (GMT) in autumn did not reach significance. Conclusion: The use of DST over the period studied was associated with rise in RTC related injury figures up to two weeks following the spring time transition. These findings inform the continuing clock changes debate. The introduction of 2-hour time change may result in detrimental effects on RTC related injuries


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 339 - 339
1 May 2009
Brick M
Full Access

Anterior cruciate ligament reconstruction is a common procedure performed by orthopaedic surgeons. The procedure continues to evolve, with a trend towards more accurate reconstruction of the pre-existing anatomy. Single bundle reconstruction has been the gold standard, with good to excellent results returning many athletes to their chosen sports. Persisting functional instability and late degenerative changes are well described, encouraging several centres to attempt to improve upon the single bundle technique. This is a technical paper examining the first 15 cases in a single surgeon series. Technical challenges unique to double bundle reconstruction will be discussed with suggestions on how to minimise problems. Tourniquet time, early complications and KT1000 measures will be presented. The technical requirements of anatomic double bundle ACL reconstruction fall within the skill set of a competent arthroscopist. The transition can be simplified with a clear knowledge of the problems unique to this procedure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 94 - 94
1 May 2012
Alsousou J Butler D Bourma O Lecky F Willett K
Full Access

Introduction. It has been suggested that the transition phases of implementing daylight saving time (DST) may impact on serious or fatal injuries sustained as the result of road traffic collision (RTC). The aim of this study is to explore the effects of transitions into and out of daylight saving time on the incidence of such injuries. Method. This is a retrospective comparative observational study of 11-year of data submitted prospectively to the Trauma Audit Research Network (TARN) between 1996 and 2006. Data for 4 weeks before and after time transition in spring and autumn of each year was collected. The time periods selected reflect those hours with maximum light level changes due to time alterations (2-hour around sunrise and 4-hour around sunset). Travellers outside those hours are unlikely to be affected by the changes. Results. Out of 178,954 incidents in England and Wales, TARN returned 1296 incidents meeting the above time criteria, of which 282 involved a fatality. Overall, there were more crashes in autumn (845, 65.2%) comparing to spring period (451, 34.8%), with the majority occurring around sunset (1057, 81.5%). RTC related injuries at the onset of DST in spring showed a significant increase up to 14 days post time change (P=0.029), with the majority of the increase occurring at sunset. The highest increases occurred within the fatal incidents group (P=0.0019) and affected mainly the pedestrian subgroup (P=0.013). Changes in the incidence of injuries around the change back to Greenwich Mean Time (GMT) in autumn did not reach significance. Conclusion. The use of DST over the period studied was associated with rise in RTC related injury figures up to two weeks following the spring time transition. These findings inform the continuing clock changes debate. The introduction of 2-hour time change may result in detrimental effects on RTC related injuries


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 37 - 37
1 Apr 2022
McMahon S Hill R Pinto D Jackson D
Full Access

Introduction

We present the first 12 consecutive patients, undergoing elective paediatric limb reconstruction with an external fixator, for the 12-month period October 2020-October 2021. This is a single surgeon series for a newly appointed Consultant with limited previous experience. Arrangements were made for mentoring by a senior surgeon recently retired from the NHS but still active in private practice.

Materials and Methods

The average age of patients was 10.5years at the time of frame application (5—15 years). Four frames in three patients were for Blount's; two for sequelae of NF1; two for posteromedial tibial bow with shortening, two for fibula hemimelia; one congenital short femur, one for sequelae of neonatal sepsis and one for bone loss following tumour resection.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 210 - 210
1 Mar 2003
Pai V
Full Access

This is an outcome study of the use of plate fixation for treatment of comminuted fractures of the distal third of tibia to determine prognostic factors such as age, sex, type of fractures, soft tissue injury and type of implant on healing. Since 1999, a single surgeon (VP) has performed minimally invasive fixation in 18 patients for complex transitional fractures of the tibia. Follow up has been achieved by a combination of clinical and radiological assessment and notes review. An overall excellent-good result was obtained in 17 of 18 patients. In one patient, the fixation was revised due to a 20 degree external rotation mal position. In two cases there was mild external rotation of 10 degrees. There were no infections. The treatment of difficult juxta-articular fractures with a minimally invasive fixation is a useful management option. Peri-articular plates are easy to insert and give better results with respect to alignment correction


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 24 - 24
1 Mar 2013
Hipps D Holmes A Sugden K Refaie R Dowen D C. Gray A
Full Access

There were 70000 people admitted to hospital with fractured hips in 2007 and the incidence is rising by 2% each year. Hip fractures represent significant morbidity and mortality to patients and cost the NHS £1.8 billion annually. In 2008 the British Orthopaedic Association Standards for Trauma (BOAST) issued a 14-point guideline to be followed for the management of hip fractures. The aim was to improve secondary prevention of osteoporosis, reduce the falls risk and further fractures. This aimed to provide better care to improve the outcomes for patients and reduce the burden of hip fractures on society. The aim of the audit was to see if the BOAST guidelines are met before and after the transition to a level 1 MTC (Major Trauma Centre) and to measure any impact the change had. Methods: Prospective data was collected for three months in 2010, 2011 and 2012. 94 case notes were reviewed and compared to the outcomes laid out in the BOAST guidelines to see if standards were met. Overall adherence to the guideline's recommendations was high throughout the 3 sample months. For each of the 3 sample months 100% adherence was seen in all of the following criteria: further imaging if x-rays unclear, appropriate analgesia, pre-op assessment, seniority of surgeon, orthogeriatrician involvement, seniority of surgeons and submission to the National Hip Fracture Database. The main common area where adherence was less than 100% was with A and E breaches (i.e. greater than 4 hours referral to the ward). Despite relocation and transition to a level 1 MTC, the management of fractured neck of femur patients compared to the BOAST guidelines remained of a high standard. Further improvements have also been made since moving to the new hospital site where shortcomings in management have been identified. Improvements from year one to three include prophylactic antibiotics and warfarin reversal; there is now a new trust protocol in place for warfarin reversal in the case of hip fractures. Elsewhere adherence to the guidelines remains high across the sample months. Confirming that despite moving to a level 1 status the trauma team continues to be performing well and managing this group appropriately. In January 2012 BOAST published a second version of the hip fracture guidelines: A and E breaches were removed from the guidelines. There have also been several new additions to the guidelines, which prompt a further re-audit in the future


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 25 - 25
1 Feb 2017
McEntire B Zhu W Pezzotti G Marin E Sugano N Bal B
Full Access

Introduction. Femoral heads made from zirconia-toughened alumina (ZTA) are the most advanced bioceramic available for total hip arthroplasty. ZTA's superior mechanical properties result from the polymorphic transformation of its zirconia (ZrO. 2. ) phase in the presence of a propagating crack. In vitro derived activation energies predict that several human lifetimes are needed to reach a state of significant transformation;. 1. but in vivo confirmation of material stability is still lacking. This investigation determined if transition metal ions might be responsible for triggering the tetragonal to monoclinic (t®m-ZrO. 2. ) phase transformation in this bioceramic. Materials and Methods. BIOLOX. ®. delta femoral heads (CeramTec GmbH, Plochingen, Germany) were acquired and characterized for their surface monoclinic content, Vm, using Raman spectroscopy. Then they were physiologically scratched with different metals (i.e., Ti, CoCr, and Fe, n=3 each) to simulate in vivo staining as a result of acetabular shell impingement due to subluxation or dislocation. They were subsequently hydrothermally aged for up to 100 h in an autoclave at 98∼132. °. C and 1 bar pressure. Raman maps, each consisting of 120 spectra, were compiled and monoclinic contents, Vm, calculated for zones adjacent to and away from the metal stains. 2. Activation energies for the t®m transformation in stained and non-stained zones were derived and compared to retrieved heads having service lives of between ∼45 days and ∼8 years. Results. The fractions of m-ZrO2 in the as-received and treated heads are presented in Table 1. In all cases, significantly greater amounts of m-ZrO. 2. were found on the metal stained areas, with the transformation amounts similar to retrieved heads. Activation energies for the t®m transformation in non-stained, CoCr-, Fe-, and Ti-stained zones were found to be 79, 60, 62, and 67 kJ/mol, respectively. Extrapolated t®m time-transformation curves at 37. °. C are shown in Figure 1 along with average m-ZrO. 2. fractions from 15 short- and medium-term retrievals. Data are compiled for values obtained on the main-wear-zones (MWZ) and non-wear-zones (NWZ) versus their elapsed time in vivo. Discussion. This experiment suggests a discrepancy in predicted (in vitro) versus observed (in vivo) phase transformation rates for metal stained ZTA femoral heads. 1. This phenomenon should be carefully considered because of its potential effect after reductions of dislocations and in the taper of these heads. While explaining the gap between in vitro predictions and in-vivo observations for phase transformation rates in ZTA components, an intrinsic incompatibility between ZTA and metal ions was also demonstrated. This phenomenon arises from a catalytic reaction at the ceramic surface by enhanced hydroxyl concentrations near the metal stains. Conclusion. Metal ions have an apparent detrimental role in destabilizing the zirconia phase at the surface of ZTA femoral heads which may impact mechanical or wear performance. Metal ions naturally present in the prosthetic joint space, metal staining of the head from hip instability, or metal ions released from modular taper corrosion may contribute to ZTA instability, even in well-functioning THA prostheses


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 131 - 132
1 May 2011
Kelly J Dwyer R Murphy M Barry F O’Briain T Kerin M
Full Access

Background: 70% of Breast Cancer patients develop metastatic bone deposits, predominantly spinal metasases. Adult Mesenchymal Stem Cells (MSCs) are multiprogenitor stem cells found within the bone marow which have the ability to self renew and differentiate into multiple cell types. MSCs home specifically to tumour sites, highlighting their potential as delivery vehicles for therapeutic agents. However studies show they may also increase tumour metastatic potential. Aims: The aim of this study was to investigate interactions between MSCs and breast cancer cells to further elucidate their role in the tumour microenvironment and hence understand factors involved in stimulating the formation of bone metastases. Methods: MSCs harvested from the iliac crest of healthy volunteers were grown for collection of conditioned medium (CM), containing all factors secreted by the cells. Breast cancer cell lines (T47D, SK-BR3) were then cultured in MSC CM +/− antibodies to TGFβ, VEGF, MCP-1 and CCL5 for 72hrs. Cell proliferation was assessed using an Apoglow. ®. assay and RNA harvested for analysis of changes in Epithelial Mesenchymal Transition specific gene expression: N-Cadherin, E-Cadherin, Vimentin, Twist, Snail. Results: A significant down regulation of breast cancer cell proliferation in the presence of MSC secreted factors was observed (p< 0.05). There was a dramatic increase in expression of EMT specific genes in both cell lines following exposure to MSC-secreted factors. Inclusion of antibodies to TGF, VEGF, MCP-1 and CCL5 inhibited the effect seen, suggesting these paracrine factors played a role in the elevated expression levels. Conclusion: MSCs clearly have a distinct paracrine effect on breast cancer epithelial cells, mediated at least in part through secretion of growth factors and chemokines. These factors play an important role in the metastatic cascade and may represent potential therapeutic targets to inhibit MSC-breast cancer interactions, helping to prevent the formation of bone metastases in cancer


Background. 70% of breast cancer patients develop metastatic bone deposits, predominantly spinal metasases. Adult Mesenchymal Stem Cells (MSCs) are multiprogenitor stem cells found within the bone marow which have the ability to self-renew and differentiate into multiple cell types. MSCs home specifically to tumour sites, highlighting their potential as delivery vehicles for therapeutic agents. However studies show they may also increase tumour metastatic potential. Aim. To investigate interactions between MSCs and breast cancer cells to further elucidate their role in the tumour microenvironment and hence understand factors involved in stimulating the formation of bone metastases. Methods. MSCs harvested from the iliac crest of healthy volunteers were grown for collection of conditioned medium (CM), containing all factors secreted by the cells. Breast cancer cell lines (T47D, SK-BR-3, MDA-MB-231) were then cultured in MSC CM +/− antibodies to TGFβ, VEGF, MCP-1 and CCL5 for 72hrs. Cell proliferation was assessed using an Apoglow. (r). assay and RNA harvested for analysis of changes in Epithelial Mesenchymal Transition specific gene expression : N-Cadherin, E-Cadherin, Vimentin, Twist, Snail. Results. A significant down regulation of breast cancer cell proliferation in the presence of MSC secreted factors was observed (p< 0.05). There was a dramatic increase in expression of EMT specific genes in both cell lines following exposure to MSC-secreted factors. Inclusion of antibodies to TGF, VEGF, MCP-1 and CCL5 inhibited the effect seen, suggesting these paracrine factors played a role in the elevated expression levels. Conclusion. MSCs clearly have a distinct paracrine effect on breast cancer epithelial cells, mediated at least in part through secretion of growth factors and chemokines. These factors play an important role in the metastatic cascade and may represent potential therapeutic targets to inhibit MSC-breast cancer interactions, helping to prevent the formation of bone metastases in cancer


Background. 70% of Breast Cancer patients develop metastatic bone deposits, predominantly spinal metasases. Adult Mesenchymal Stem Cells (MSCs) are multiprogenitor stem cells found within the bone marow which have the ability to self renew and differentiate into multiple cell types. MSCs home specifically to tumour sites, highlighting their potential as delivery vehicles for therapeutic agents. However studies show they may also increase tumour metastatic potential. Aims. The aim of this study was to investigate interactions between MSCs and breast cancer cells to further elucidate their role in the tumour microenvironment and hence understand factors involved in stimulating the formation of bone metastases. Methods. MSCs harvested from the iliac crest of healthy volunteers were grown for collection of conditioned medium (CM), containing all factors secreted by the cells. Breast cancer cell lines (T47D, SK-BR-3, MDA-MB-231) were then cultured in MSC CM +/− antibodies to TGFβ, VEGF, MCP-1 and CCL5 for 72hrs. Cell proliferation was assessed using an Apoglow(r) assay and RNA harvested for analysis of changes in Epithelial Mesenchymal Transition specific gene expression : N-Cadherin, E-Cadherin, Vimentin, Twist, Snail. Results. A significant down regulation of breast cancer cell proliferation in the presence of MSC secreted factors was observed (p<0.05). There was a dramatic increase in expression of EMT specific genes in both cell lines following exposure to MSC-secreted factors. Inclusion of antibodies to TGF, VEGF, MCP-1 and CCL5 inhibited the effect seen, suggesting these paracrine factors played a role in the elevated expression levels. Conclusion. MSCs clearly have a distinct paracrine effect on breast cancer epithelial cells, mediated at least in part through secretion of growth factors and chemokines. These factors play an important role in the metastatic cascade and may represent potential therapeutic targets to inhibit MSC-breast cancer interactions, helping to prevent the formation of bone metastases in cancer


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 48 - 48
1 Sep 2012
Melloh M Elfering A Röder C Hendrick P Darlow B Theis J
Full Access

Most people experience low back pain (LBP) at least once in their lifetime. A minority goes on to develop persistent LBP causing significant socioeconomic costs. Aim of this study was to identify factors that influence the progression of acute to persistent LBP at an early stage (Hilfiker et al. 2007).

Prospective inception cohort study of patients attending a health practitioner for their first episode of acute LBP or recurrent LBP after a pain free period of at least six months. Patients were assessed at baseline addressing occupational and psychological factors as well as pain, disability, quality of life and physical activity, and followed up over six months. Baseline and follow-up questionnaires were based on the recommendations of the Multinational Musculoskeletal Inception Cohort Study (MMICS) Statement (Pincus et al. 2008). Variables were combined to the three indices ‘working condition’, ‘depression and maladaptive cognitions’ and ‘pain and quality of life’.

The index ‘depression and maladaptive cognitions’ comprising of depression, somatisation, a resigned attitude towards the job, fear-avoidance, catastrophizing and negative expectations on return to work was found to be a significant baseline predictor for persistent LBP up to six months (OR 5.1; 95%CI 1.04–25.1). The diagnostic accuracy of the predictor model had a sensitivity of 0.54 and a specificity of 0.90. Positive likelihood ratio was moderate with 5.3, negative likelihood ratio 0.5. Overall predictive accuracy of the model was 81%. The area under the curve in receiver operating characteristic (ROC) analysis of the index was 0.78 (CI95% 0.65–0.92), demonstrating a satisfactory quality of discrimination.

Psychological factors in patients with acute LBP in a primary care setting correlated with a progression to persistent LBP up to six months. The benefit of including factors such as ‘depression and maladaptive cognition’ in screening tools is that these factors can be addressed in primary and secondary prevention.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 573 - 581
1 Jun 2024
van Houtert WFC Strijbos DO Bimmel R Krijnen WP Jager J van Meeteren NLU van der Sluis G

Aims. To investigate the impact of consecutive perioperative care transitions on in-hospital recovery of patients who had primary total knee arthroplasty (TKA) over an 11-year period. Methods. This observational cohort study used electronic health record data from all patients undergoing preoperative screening for primary TKA at a Northern Netherlands hospital between 2009 and 2020. In this timeframe, three perioperative care transitions were divided into four periods: Baseline care (Joint Care, n = 171; May 2009 to August 2010), Function-tailored (n = 404; September 2010 to October 2013), Fast-track (n = 721; November 2013 to May 2018), and Prehabilitation (n = 601; June 2018 to December 2020). In-hospital recovery was measured using inpatient recovery of activities (IROA), length of stay (LOS), and discharge to preoperative living situation (PLS). Multivariable regression models were used to analyze the impact of each perioperative care transition on in-hospital recovery. Results. The four periods analyzed involved 1,853 patients (65.9% female (1,221/1,853); mean age 70.1 years (SD 9.0)). IROA improved significantly with each transition: Function-tailored (0.9 days; p < 0.001 (95% confidence interval (CI) -0.32 to -0.15)), Fast-track (0.6 days; p < 0.001 (95% CI -0.25 to -0.16)), and Prehabilitation (0.4 days; p < 0.001 (95% CI -0.18 to -0.10)). LOS decreased significantly in Function-tailored (1.1 days; p = 0.001 (95% CI -0.30 to -0.06)), Fast-track (0.6 days; p < 0.001 (95% CI -0.21 to -0.05)), and Prehabilitation (0.6 days; p < 0.001 (95%CI -0.27 to -0.11)). Discharge to PLS increased in Function-tailored (77%), Fast-track (91.6%), and Prehabilitation (92.6%). Post-hoc analysis indicated a significant increase after the transition to the Fast-track period (p < 0.001 (95% CI 3.19 to 8.00)). Conclusion. This study highlights the positive impact of different perioperative care procedures on in-hospital recovery of patients undergoing primary TKA. Assessing functional recovery, LOS, and discharge towards PLS consistently, provides hospitals with valuable insights into postoperative recovery. This can potentially aid planning and identifying areas for targeted improvements to optimize patient outcomes. Cite this article: Bone Joint J 2024;106-B(6):573–581