Introduction. Missile injuries are very serious injuries particularly in the cervical region. They are classified into high and low missile injuries when it involves the cervical spine. In modern guerrilla warfare, one must be aware of ballistic pathology with bullets as well as from explosives. In particular, improvised explosive devices commonly known as IED's play a new and important pathophysiology whether they are suicided vests or roadside bombs. They usually produce severe or lethal injuries and serious neurovascular deficit is frequent. We present the details of 40 patients with local experience on how to handle serious penetrating cervical missile injuries. Methods. All cases were collected from the record of Basrah University Hospital, Iraq. Healthy military gentlemen with ages ranging between 20–35 years were included. Results. 11 patients had bullet injuries and 29patients had fragments of shell injuries. The sites of injuries were 9: C2–C3, 12: C5–C6, 12: C4–C5 and 7: C7-T1. Bullet entrance was anterior in 23 patients, posterior in 7 patients and lateral in 10 patients. The cervical vertebrae were injured in 37 patients at body or lamina level while in 3 patients it was only neural
INTRODUCTION. Interest in tissue-preserving or minimally invasive total hip arthroplasty (THA) is increasing with focus toward decreased hospital stay, enhanced rehabilitation, and quicker recovery for patients. Two tissue-preserving techniques, the anterior and superior approaches to THA, have excellent clinical results, but little is known about their relative impact on soft tissue. The purpose of this study was to evaluate the type and extent of tissue damage after THA with each approach, focusing on abductors, short external rotators, and the hip capsule. METHODS. Total hip arthroplasty was performed on bilateral hips of eleven fresh-frozen cadavers (22 hips). They were randomized to anterior THA performed on one side and superior THA performed on the other, in the senior authors' standard technique. Two independent examiners graded the location and extent of
Abstract. Objectives. The term heterotopic ossification (HO) describes lamellar bone formation within soft
The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.Aims
Methods
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.Aims
Methods
CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.Aims
Methods
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and
Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective
Purpose: Compartment syndrome is a limb-threatening complication of skeletal trauma. Both ischemia and inflammation may be responsible for tissue necrosis in compartment syndrome (CS). In this study, normal rodents were compared with neutropenic animals to determine the importance of inflammation as a mechanism of cellular damage using techniques of intravital videomicroscopy (IVVM) and histochemical staining. Method: Forty Wistar rats were randomised. Twenty animals served as a control (group C). Twenty rats were rendered neutropenic using cyclophosphamide (250mg/kg) (group N). Animals were anaesthetised with 5 % isoflurane. Elevated intracompartmental pressure was induced by saline infusion into the anterior hindlimb compartment and maintained at 30–40 mmHg for 0, 15, 45 or 90 minute time intervals. Following fasciotomy, the EDL muscle was analyzed using IVVM to quantify
Background. Some reports have suggested that debris generated from the head neck taper junction is more destructive than equivalent doses from metal bearing surfaces. Methods. Part 1. We examined the relationship between the source (taper/bearing) and volume of metal debris on Cr and Co concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using regression analysis of prospectively collected data at a single revision unit. Part 2. We investigated variables most strongly associated with macroscopic soft tissue injury as documented at revision surgery using ordinal logistic regression. Independent variables included source and volume of CoCr exposure, Cr and Co joint fluid concentrations, joint fluid grade, ALVAL (Aseptic Lymphocytic Vasculitis Associated Lesion) grade, presence of vascular hyalinisation, agglomerated particle size, implant type, patient sex and age. Results. A total of 199 explanted MoM hips were analysed. Multiple regression statistical modelling suggested that a greater source contribution of metal debris from the taper junction was associated with smaller aggregated particle sizes in the local tissues and a relative reduction of Cr ion concentrations in the corresponding synovial fluid and blood samples. There was an association between increasing Co concentrations in the joint fluid and an increasing ALVAL score (p<0.001). In contrast, higher Cr concentrations were inversely related to ALVAL (p<0.001). The ALVAL response was itself strongly associated with larger fluid collections (p<0.001). Vascular hyalinisation and larger fluid collections were significantly associated with macroscopic
Spinal cord injury (SCI) is a devastating disorder for which the identification of exacerbating factors is urgently needed. Although age, blood pressure and infection are each considered to be prognostic factors in patients with SCI, exacerbating factors that are amenable to treatment remain to be elucidated. Microglial cells, the resident immune cell in the CNS, form the first line of defense after being stimulated by exposure to invading pathogens or
Background: Neck pain is a growing problem which is linked to occupational factors that include work above shoulder height or sustained neck flexion. These activities may induce fatigue in the neck muscles impairing the muscles’ ability to provide reflex contractions that protect against
During two sequential deployments to Afghanistan, it was noticed that an inordinately high number of patients with bilateral lower limb injuries that resulted in amputations at Camp Bastion itself, had associated upper limb injuries. It was decided to study the incidence and distribution of the same. Permission was granted to conduct this study as it would throw a light on the pattern of injuries and allow a further study of the impact of this on rehabilitation. This was both a retrospective as well as a prospective study. Of the 221 cases, 68 were recorded and data collected prospectively whereas the data for the rest was gathered using the patients' scanned records from Camp Bastion, their radiology reports and clinical photographs (from the Joint Theatre Trauma Registry). A total of 221 patients were studied as described above. They included UK, NATO, US, ANA, ANP, EF and Afghan civilians (June 2009 - January 2011). There were 59 fatalities from these 221 cases. That data pertaining to these cases was discarded. Of the surviving 162 cases, 31 cases had no upper limb involvement. A number of these individuals were subjected to an IED attack when mounted, although dismounted injuries still accounted for the vast majority. 131 individuals had upper limb involvement of some sort or the other. The injuries were classified into anatomical distribution as well and the type of trauma (amputations, composite soft tissue, fractures, vascular, nerves etc). The predominance of the injuries was on the distal portion of the upper limb (i.e involving the digits, hands and forearm (digits and hands – 66 patients, wrist and forearm in 69 patients, elbow and arm in 42 patients). The most common form of involvement was a composite
Purpose of the study. We report septic shock as postoperative complication following an instrumented posterior spinal arthrodesis on a patient with multiple body piercings. The management of this potentially catastrophic complication and outcome of treatment is been discussed. Summary of Background Data. Body piercing has become increasingly more common due to change in culture or as a fashion statement. This has been associated with local or generalized ill effects including
Whiplash is a contentious issue in the medico-legal field; opposing views are held about persisting symptoms. The exact pathology is not known; but it is generally accepted to be ‘soft
Introduction. Numerous studies have been conducted to investigate the kinematics of the lumbar spine, and while many have documented its intricacies, few have analyzed the complex coupled out-of-plane rotations inherent in the low back. Some studies have suggested a possible relationship between patients having low back pain (LBP) or degenerative conditions in the lumbar region and various degrees of restricted, excessive, or poorly-controlled lumbar motion. Conversely, others in the orthopedic community maintain there has been no distinct correlation found between spinal mobility and clinical symptoms. The objective of this study was to evaluate both the in-plane and coupled out-of-plane rotational magnitudes about all three motion axes in both symptomatic and asymptomatic patients. Methods. Ten healthy, 10 LBP, and 10 degenerative patients were CT scanned and evaluated under fluoroscopic surveillance while performing flexion/extension of the lumbar spine. Three-dimensional, patient-specific bone models were created and registered to fluoroscopic images using a 3D-to-2D model fitting algorithm. In vivo kinematics were derived at specified increments and the overall in-plane flexion/extension and coupled out-of-plane rotations were analyzed using two techniques. The first method derived the maximal absolute rotational magnitude (MARM) at each level by subtracting the rotational motion in the increment exhibiting the most negative or least amount of rotation from the increment having the greatest amount of rotation. The second method was designed to isolate the path of rotation (POR) of the vertebrae at each level while performing the prescribed flexion/extension activity. By tracking the rotational path of the cephaled vertebrae as it articulated upon the more caudal vertebrae and summing the absolute rotation between each increment about each axis the POR was calculated over the entire flexion/extension activity. Results. Using both the MARM and POR methods, the average overall in-plane rotations between L1 and L5 were not significantly different among any of the groups, although the degenerative group did exhibit less in-plane range-of-motion compared to the healthy and LBP patients. At the L4–L5 level, patients in the healthy and LBP groups achieved 13.1° and 14.4° of rotation, respectively, compared to only 10.7° in the degenerative group. In addition, both of the symptomatic patient groups experienced less rotation during the extension phase of the activity. The coupled out-of-plane motions in both the LBP and degenerative subjects were significantly greater than those observed in healthy subjects (p=0.0199 and p<0.001, respectively). On average, LBP and degenerative patients achieved 5.5° and 7.1° more out-of plane rotational motion per level, respectively, compared to healthy subjects. Conclusions. These findings correlate with previous studies documenting paradoxical motions in the lumbar spine during an overall gross motion and support the idea of pain being a biological response to
Following ischaemia-reperfusion (I-R) tissues undergo a neutrophil mediated oxidant injury. Vitamin C is a water-soluble endogenous anti-oxidant, which has been shown in previous studies to abrogate neutrophil mediated endothelial injury. Our aim was to evaluate Vitamin C supplementation in the prevention of I-R induced acute muscle injury. Sprague-Dawley rats (n-6/group) were randomised into control, I-R and I-R pretreated with Vitamin C (3.3g over 5 days). Cremasteric muscle was isolated on its neuro-vascular pedicle and I-R injury induced by clamping the pedicle for 3 hours, the tissue was subsequently reperfused for 60 minutes. Following reperfusion muscle function was assessed by electrical field stimulation: peak twitch (PTV), maximum tetanus (MTV) and fatigability values were recorded. Tissue neutrophil infiltration was assessed by tissue myeloperoxidase (MPO) activity and tissue oedema by wet:dry ratio (WDR). Ischaemia-reperfusion (I-R) resulted in a significant decrease in muscle function (PTV<
MTV) there was no difference in fatigability values between groups. I-R also resulted in a significant increase in neutrophil infiltration (MPO) and tissue oedema (WDR). Pre-treatment with Vitamin C attenuated I-R injury as assessed by these parameters. This data suggests that oral Vitamin C reduce I-R induced acute muscle injury, possibly by attenuating neutrophil mediated
Purpose: Severe fractures damage blood vessels and disrupt circulation at the fracture site resulting in an increased risk of poor fracture healing. Endothelial progenitor cells (EPCs) are bone-marrow derived cells with the ability to differentiate into endothelial cells and contribute to neovascularization and re-endothelialization after
Aim: