Introduction: Polyethylene wear debris is the main contributing factor that leads to aseptic loosening and osteolysis. The main objective of this study was to evaluate the role of hydroxyapatite (HA) in
Introduction: Polyethylene wear debris is the main contributing factor that leads to aseptic loosening and osteolysis. The main objective of this study was to evaluate the role of hydroxyapatite (HA) in
Between 1995 and 1998, eighty revision total knee arthroplasties were done for the primary reason of advanced polyethylene wear. The primary arthroplasties prosthesis that failed included thirty-four mobile bearing knees and forty-six fixed bearing knees. In thirty-four Low Contact Stress (LCS) mobile bearing knees, osteolysis was identified intraoperatively in sixteen knees (forty-seven per cent). There were varying of fixation methods included nine cemented, four cementless and three hybrids. In forty-six fixed bearing knees, osteolysis was identified intraoperatively in six knees (thirteen per cent). The fixation methods of prostheses included two cemented and four cementless. The incidence of osteolysis was statistically significant difference between the mobile bearing and fixed bearing knees (p<
0.02). Both scattering electron microscope (SEM) and light scattering analysis were used to examine the UHMWPE wear debris collected from tissue sample. The particle size analyzed by light-scattering is coincident with the measurement by SEM. The major type of wear debris extracted from failed knee prostheses is granular shape. There are more granular wear debris appear in the mobile bearing knees than in the fixed bearing knees. The particle size of UHMWPE wear debris with osteolysis was significantly smaller than that without osteolysis. The high rate of osteolytic lesions in mobile bearing knee (LCS) is well illustrated in our result that a lot of fine UHMWPE wear debris generated in the Low Contact Stress knee. The result also illustrates that there is no relationship between fixation methods and the third body wear that associate with osteolysis.
Objectives.
Introduction. The release of metal debris and ions has raised concerns in joint arthroplasty. In THA metal debris and ions can be generated by wear of metal-on-metal bearing surfaces and corrosion at modular taper interfaces, currently understood to be mechanically assisted crevice corrosion (MACC) [1]. More recently, inflammatory-cell induced corrosion (ICIC) has been identified as a possible source of metal debris and/or ions [2]. Although MACC has been shown to occur at modular junctions in TKA, little is known about the prevalence of other sources. The purpose of this study was to determine the sources of metallic debris and ion release in long-term implanted (in vivo > 15y) TKA femoral components. Specific attention was paid to instances of ICIC as well as damage at the implant-bone interface. Methods. 1873 retrieved TKA components were collected from 2002–2013 as part of a multi-center, IRB-approved retrieval program. Of these, 52 CoCr femoral condyles were identified as long term TKA (Average: 17.9±2.8y). These components were predominantly revised for loosening, PE wear and instability. 40/52 of the components were primary surgeries. Components were examined using optical microscopy to confirm the presence of 5 damage mechanisms (polyethylene failure, MACC corrosion of modular tapers, corrosion damage between cement and backside,
Introduction. Today TKR is considered one of the most successful operative procedures in orthopedic surgery. Nevertheless, failure rates of 2 – 10% depending on the length of the study and the design are still reported. This provides evidence for further development in knee arthroplasty. Particularly the oxide ceramics used now in THA show major advantages due to their excellent tribological properties, their significantly reduced
With the plasma–spray technique of applying a hydrox-ylapatite (HA) coating bone ingrowth can be enhanced and early migration of hip prostheses reduced. The significance of coating resorption is controversial. In this study the bone growth and the degradation of the HA coatings were evaluated and compared by SEM. Premature loosening was identified in four cups with an Ha coating over a porous-coated surface 3 years post-operatively.The Ha coating has a thickness of up to 50 μm. The cup specimens were soaked in 6% sodium hypochlorite to render them anorganic, dehydrated, and sputter-coated with gold-palladium. Secondary electron images of all specimens were obtained by field emission SEM (Zeiss:DSM.962). Ultrastructural analysis showed that all porous-coated Ha-coated cups had bridges of lamellar bone in direct contact with the implant surface (30% bone in-on growth). Different types of coating degradation were observed. Delamination between the coating and implant surface releases numerous particles or fragments; the resorption by osteoclasts of the amorphous phase was shown to expose the crystalline phase of the coating grains. This study suggests that resorption disintegrates the Ha coating and reduces the bonding strength between implant and bone and the strength of the coating-implant interface, which might lead to implant loosening,coating delamination and acceleration of
Revision of fractured ceramic-on-ceramic total hip replacements with a cobalt-chromium (CoCr) alloy-on-polyethylene articulation can facilitate metallosis and require further expensive revision surgery [1–3]. In the present study, a fifty-two year old male patient suffered from fatal cardiomyopathy after undergoing revision total hip arthroplasty. The patient had received a polyethylene-ceramic acetabular liner and a ceramic femoral head as his primary total hip replacement. The polyethylene-ceramic sandwich acetabular liner fractured in vivo after 58 months and the patient underwent his first revision surgery where he received a Vitamin E stabilized acetabular Polyethylene (PE) liner and a CoCr alloy femoral head with documented synovectomy at that time. After 15 months, the patient was admitted to hospital in cardiogenic shock, with retrieval of the bearing components. Before the second revision surgery, peak serum cobalt levels measured 6,521 μg/L, 78-times greater than serum cobalt levels of 83μg/L associated with cobalt poisoning [4]. Serum titanium levels found in the patient measured 17.5 μg/L) normal, healthy range 0–1.4 μg/L). The retrieved CoCr alloy femoral head had lost a total of 28.3g (24% or an estimated amount of 102 × 10. −9. wear particles (∼2 μm diameter) [1]) within 16 months of in vivo service. Despite initiating a cobalt chelating therapy, the patients' cardiac left ventricular ejection fraction remained reduced at 6%. This was followed by multi-organ failure, and ultimately the patient passed away shortly after being taken off life support. Embedded ceramic particles were found on the backside and articular surfaces of the Vitamin E-stabilized PE acetabular liner. Evidence of fretting wear on the titanium (Ti) alloy acetabular shell was present, possibly explaining the increased serum Ti levels. Scanning electron microscopy and energy dispersive X-ray analyses confirmed Ti alloy transfer on the embedded ceramic particles on the backside PE liner surface and CoCr alloy transfer on the embedded ceramic particles on the articular PE liner surface. A fractured ceramic-on-ceramic total hip replacement should not be revised to a CoCr alloy-on-polyethylene articulation irrespective of concurrent synovectomy [5] as it can cause severe,
Summary. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component has performed well at minimum of 5 years’ follow-up. Introduction. Total Knee Arthroplasty prostheses most frequently used in today's practice have cemented components. These have shown excellent clinical results. The fixation can however weaken with time, and cement debris within the articulation can lead to accelerated wear. Cementless implants are less commonly used, but some have also shown good long-term clinical results. The potential advantages of cementless implants are retention of bone stock, less chance of
Introduction. From a tribological point of view and clinical experience, a ceramic-on-ceramic bearing represents the best treatment option after rare cases of ceramic component fracture in total hip arthroplasty (THA). Fractured ceramic components potentially leave small ceramic fragments in the joint capsule which might become embedded in PE acetabular liners. Purpose. This in vitro study compared for the first time the wear behaviour of femoral ball heads made of ceramic and metal tested with PE liners in the presence of ceramic third-body debris. The contamination of the test environment with third-body ceramic debris, insertion of ceramic fragments into the PE liners and implementation of continuous subluxation simulated a worst-case scenario after revision of a fractured ceramic component. Materials and Methods. Ceramic femoral ball heads (ϕ 32 mm) made of alumina matrix composite (AMC; BIOLOX® delta, CeramTec, Germany) were tested in combination with PE and cross-linked liners and compared to metal femoral ball heads (CoCrMo) of the same diameter. All PE liners were fixed into Ti-6Al-4V metal shells by conical fixation as intended for clinical use. The tests were performed based on ISO 14242-1 utilizing a hip simulator (EndoLab, Germany). Alumina ceramic debris (BIOLOX® forte, CeramTec, Germany) of about 2 mm diameter (maximum 5 mm) were inserted into the PE liners in predefined specific points corresponding to the main load transfer area before the test. The acetabular liners were tested at an inclination of 45° in the medial-lateral plane with the specimens placed in an anatomically correct position. During the test, additional alumina ceramic debris was introduced into the articulation area as a part of the test fluid (calf serum) used in the simulator test chambers. All specimens were tested up to 5 million cycles. Damages to the surfaces of the materials were assessed visually. The wear of the femoral ball heads was measured gravimetrically. Results. High wear rates were found for metal femoral ball heads, being 1,010 times higher when compared to ceramic femoral ball heads tested with XPE liners and 560 times higher when compared to ceramic femoral ball heads tested with conventional PE liners. The conventional and crosslinked PE liners used in combination with metal femoral ball heads clearly exhibited a scratched surface, whereas the surface of the liners tested with ceramic femoral ball heads exhibited significantly less scratching. Discussion and Conclusion. This study demonstrates that apart from the recommended ceramic-on-ceramic option also ceramic-on-PE and ceramic-on-crosslinked PE bearing couples may be a viable treatment option after fracture of a ceramic component. The use of a ceramic femoral ball head after fracture of a ceramic articulation component minimizes wear and wear-related complications caused by
Poly-L-lactic acid (PLLA) is characterized by its biocompatibility and biodegradability, and is used clinically. In our hospital, we started to use PLLA screws instead of metallic or ceramic screws in the fixation of acetabular bone grafts in total hip arthroplasty (THA) in 1990, because there were concerns about the use of rigid and nonbioabsorble screws, which might contribute to the absorption of the grafted bone and induce metallosis or
Aseptic loosening induced by wear debris of polyethylene (PE) is the most common cause of long-term total hip arthroplasty failure. In the previous studies, we reported that the protruding contour and surface morphology of metallic femoral head brought an increase of PE wear. Alumina ceramics is advantageous (neutral shape and smooth surface) for precision machining compared with metal materials, because hardness of ceramics is higher than that of metal materials. In this study, we measured the roundness and the roughness of retrieved alumina ceramic and metallic heads, aiming to evaluate the change of surface morphology of those heads in vivo. Fourteen retrieved alumina ceramic femoral heads (Kyocera Corp., currently Japan Medical Materials Corp.) were examined: ten femoral heads were made of small grain-size alumina ceramic (SG-alumina; mean grain size is 3.4 um) with a diameter of 28 mm, with clinical use for 16–28 years (mean 22 years) and four femoral head was made of extra-small-grain size alumina ceramic (XSG-alumina; mean grain size is 1.3 um) with a diameter of 26 mm, with clinical use for 14–19 years (mean 16 years). Six retrieved metallic femoral heads with average clinical use for 12–28 years (mean 18 years) were examined: a diameter of from 22 to 32 mm (e.g. Zimmer Inc., Stryker Corp.) The roundness of the retrieved femoral heads was measured by a contour tracer. The surface roughness in the contact area and the non-contact area of the retrieved femoral heads was measured by a surface roughness tester. Out-of-roundness of SG-alumina and XSG-alumina heads was 0.15 um and 0.19 um, respectively. In contrast, that of metal heads was 2.43 um, and the profiles were in wide distortion compared with both alumina heads. The surface roughness was 0.012 um in the contact area, and 0.009 um in the non-contact area of retrieved SG-alumina heads. The surface roughness in the contact area, 0.007 um, of XSG-alumina was slightly higher than that in the non-contact area, 0.003 um, and the both area of XSG-alumina represent lower value than SG-alumina, with all alumina heads having a reentrant surface profile. In contrast, the surface roughness of metallic heads was in a range of 0.003–0.053 um and several heads showed the protrusion surface profile. In this retrieval study, the roundness and the roughness of both alumina ceramic femoral heads after long-term clinical use were low and stable compared with metallic heads. And also, the surface roughness increased in the order of XSG-alumina <
SG-alumina <
metallic head. The alumina ceramic femoral head showed the reentrant surface whereas the metallic head showed the protruding surface. When
Introduction and Aims: Due to relative motion that can occur between the polyethylene articular surface and tibial tray, backside wear of modular tibial components can be a significant contributor to wear in TKR. This study examines the backside wear performance of a tibial component system from both a laboratory and clinical perspective. Method: Polyethylene components, CR and PS, from the NexGen knee system (Zimmer Inc.) were evaluated for backside wear. These components were identified on the back surface by the manufacturer with engraved lettering of a depth ranging from 20 to 30 micrometers. Twenty-seven components retrieved after 24 to 80 months in-situ were evaluated along with six components having undergone three million cycles of laboratory knee function simulation. Backside wear was quantified by engraving mark depth and screw hole recess penetration measurements utilising a New View 5000 scanning white light interferometer (Zygo). The severity of third-body abrasion was also recorded. Results: This particular knee system utilised a peripheral rail and dovetail polyethylene locking mechanism which demonstrated little relative polyethylene to tibial tray motion during joint function simulation. Simulator testing produced backside wear of 6.4 micrometers/million cycles or 4.5 mm3/million cycles. This backside wear represented 30% of total component wear as measured gravimetrically. Backside wear in the clinically retrieved components was sufficient to completely remove the manufacturer’s engraving marks on only three of 27 components. The remaining 24 components all experienced backside wear insufficient to remove all engraving. The severity of third-body abrasion (typically bone cement) was generally associated with greater backside wear. Two of the three clinically retrieved components with worn-through lettering had evidence of significant
Total hip arthroplasty (THA) represents a very spread and effective surgical procedure. Surgeons and technologists make daily efforts in improving the outcomes of THA, with the ultimate goal of creating a prosthesis that reliably lasts at least as long as a human lifetime. While the results of primary hip arthroplasty are generally very good, revision surgeries might score variable success with regards to their clinical outcomes. In addition, they invariably represent an expensive procedure and a severe burden to the patients. Thus, a reduction of the failure rates of only a few percents can, due to the large number of patients involved, have a vast influence on the accumulated costs and patient suffering. In other words, the key issue in hip arthroplasty resides in the improvement of the prostheses with regard to their long-term in vivo reliability. These circumstances amply justify a continuous search for new hip prostheses with improved structural characteristics and elongated lifetimes. Most recent innovative trends in THA have focused on the improvement of the tribological behavior of hip joints and challenged the achievement of a longer durability, with the potential for a service-life spanning several decades. Such trends have naturally led to an increase in the use of ceramic materials, either as ceramic femoral heads yet coupled with advanced acetabular cups made of polyethylene (i.e., with improved molecular structure and quality), or as ceramic hip components for both acetabular and femoral bearing surfaces. The greater driving force in using ceramic bearings is their potential of systematically reducing periprosthetic osteolysis (i.e., mainly arising from polyethylene wear debris), which could potentially reduce the number of surgical revisions. The high inertness and biocompatibility of ceramic materials may also reduce to a minimum the collateral effects on the human body, as possibly observed with metallic prostheses (e.g., contamination by metal ions, hypersensitivity, etc.). Despite those advantages, chipping and fracturing have severely limited the popularity of ceramic components. As a further issue, it should be noted that ceramic-on-ceramic articulations strongly require high precision in setting the orientation of the components during surgery (in order to avoid excessive impingement on the ceramic surface). Partly fractured ceramic bearings necessarily dictate revision. The main reason is that the ceramic remnants in the articulation would give rise to severe
The primary objective of this registry-based study was to compare patient-reported outcomes of cementless and cemented medial unicompartmental knee arthroplasty (UKA) during the first postoperative year. The secondary objective was to assess one- and three-year implant survival of both fixation techniques. We analyzed 10,862 cementless and 7,917 cemented UKA cases enrolled in the Dutch Arthroplasty Registry, operated between 2017 and 2021. Pre- to postoperative change in outcomes at six and 12 months’ follow-up were compared using mixed model analyses. Kaplan-Meier and Cox regression models were applied to quantify differences in implant survival. Adjustments were made for patient-specific variables and annual hospital volume.Aims
Methods
INTRODUCTION. Total knee arthroplasty (TKA) is typically performed using cement to secure the prosthesis to bone. There are complications associated with cementing that include intra-operative hypotension,
Introduction. Previous studies of CoCr alloy femoral components for total knee arthroplasty (TKA) have identified 3. rd. body abrasive wear, and apparent inflammatory cell induced corrosion (ICIC) [1] as potential damage mechanisms. The association between observed surface damage on the femoral condyle and metal ion release into the surrounding tissues is currently unclear. The purpose of this study was to investigate the damage on the bearing surface in TKA femoral components recovered at autopsy and compare the damage to the metal ion concentrations in the synovial fluid. Methods. 12 autopsy TKA CoCr femoral components were collected as part of a multi-institutional orthopedic implant retrieval program. The autopsy components included Depuy Synthes Sigma Mobile Bearing (n=1) and PFC (n=1), Stryker Triathlon (n=1) and Scorpio (n=3), and Zimmer Nexgen (n=4) and Natural Knee (n=2). Fluoro scans of all specimens prior to removal was carried out to assure no signs of osteolysis or aseptic loosening were present.
Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry.Objectives
Methods
Introduction. Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs. Methods. 308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening.
Damage to metal-on-metal bearings (MOM) has been varyingly described as “edge