Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.Aims
Methods
Objectives. Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis. Methods. Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. Results. A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down-regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expression and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative
A variety of scaffolds, including collagen-based membranes, fleeces and gels are seeded with osteoblasts and applied for the regeneration of bone defects. However, different materials yield different outcomes, despite the fact that they are generated from the same matrix protein, i.e. type I collagen. Recently we showed that in fibroblasts MMP-3 is induced upon attachment to matrix proteins in the presence of TGFbeta. Aim: To investigate the regulation of matrix metalloproteinases (MMPs) and interleukins (IL) in osteoblasts upon attachment to type I collagen (col-1) in comparison to laminin -1 (LM-111) in the presence or absence of costimulatory signals provided by transforming growth factor beta (TGFbeta). Methods: Osteoblasts were seeded in col-1–and LM-111-coated flasks and activated by the addition of TGFbeta. Mock-treated cells served as controls. The expression of genes was investigated by quantitative
Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage metabolism. It have been reported that ceramic is bioinert for biological tissue. On the other hand, metal including cobalt-chrome (Co-Cr) have some detrimental effect on biological tissue. However, there is no report concerning acetabular cartilage metabolism after hip endprosthesis implantation. In the present study, we hypothesized that ceramic head have small detrimental effect on cartilage cell metabolism. Specific aim of the study is to compare the protein level of inflammation related cytokines, amount of hyaluronic acid (HA) in culture media, and cartilage mRNA expression in organ culture model of hip end prosthesis implanted using ceramic head and Co-Cr head. Materials and Methods. Six acetabulum of 3 matured crossbred pig (average weight: 36 +/− 3.6kg) was retrieved. Animal experiment was performed under the rules of ethical committee of animal experiment. Average diameter of pig acetabulum was 26.3 +/− 0.6 mm. Just after sacrifice, mechanical loading using Instron testing machine with 26mm diameter of Co-Cr in right hip and Ceramic heads in left hip was performed in culture media. Ten thousand cycles of cyclic compression and rotation load (1.5kN to 0.15kN of compression and 12 degrees of rotation) to cartilage was applied at 1Hz (Figure 1). Culture media was analyzed for protein levels of inflammation related cytokines and amount of HA. Relative quantitative
Purpose: Vascular Endothelial Growth Factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy accelerates bone healing of a rabbit tibia segmental bone defect in-vivo, and increases osteoblast proliferation and mineralization in-vitro. The aim of this project was to examine the effect of exogenous human VEGF (hVEGF) on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Method: The osteoblasts were obtained from the rat periosteum. The fibroblasts were obtained from the rat dermal tissue. The cells were then cultured to reach 60% confluence and transfected with hVEGF using Superfect. Four groups were:. osteoblast-hVEGF,. fibroblast-hVEGF,. Osteoblasts alone, and. Fibroblasts only. The cultured cells were harvested at 1, 3 and 7 days after the transfection. The total mRNA was extracted (TRIZOL); both hVEGF and rat VEGF mRNA were measured by
Purpose. Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in bone repair by promoting angiogenesis and osteogenesis. In our previous study, endothelial progenitor cells (EPCs) promoted bone healing in a rat segmental bone defect as confirmed by radiological, histological and microCT evaluations (Atesok, Li, Schemitsch 2010); EPC treatment of fractures resulted in a significantly higher strength by biomechanical examination (Li, Schemitsch 2010). In addition, cell-based VEGF gene transfer has been effective in the treatment of segmental bone defects in a rabbit model (Li, Schemitsch et al 2009); Purpose of this study: Evaluation of VEGF gene expression after EPC local therapy for a rat segmental bone defect. Method. Rat bone marrow-derived EPCs were isolated from the rat bone marrow by the Ficoll-paque gradient centrifuge technique. The EPCs were cultured for 7 to 10 days in endothelial cell growth medium with supplements (EGM-2-MV-SingleQuots, Clonetics). and collected for treatment of the rat segmental bone defect. EPCs were identified by immunocytochemistry staining with primary antibodies for CD34, CD133, FLK-1, and vWF. A total of fifty six rats were studied. A five millimeter segmental bone defect was created in the middle 1/3 of each femur followed by mini plate fixation. The treatment group received 1×106 EPCs locally at the bone defect and control animals received saline only. Seven control and seven EPC treated rats were included in each group at 1, 2, 3 and 10 weeks. Animals were sacrificed at the end of the treatment period, and specimens from the fracture gap area were collected and immediately frozen. Rat VEGF mRNA was measured by
To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.Aims
Methods
It is imperative to understand the risks of operating on urgent cases during the COVID-19 (SARS-Cov-2 virus) pandemic for clinical decision-making and medical resource planning. The primary aim was to determine the mortality risk and associated variables when operating on urgent cases during the COVID-19 pandemic. The secondary objective was to assess differences in the outcome of patients treated between sites treating COVID-19 and a separate surgical site. The primary outcome measure was 30-day mortality. Secondary measures included complications of surgery, COVID-19 infection, and length of stay. Multiple variables were assessed for their contribution to the 30-day mortality. In total, 433 patients were included with a mean age of 65 years; 45% were male, and 90% were Caucasian.Aims
Methods