header advert
Results 1 - 20 of 151
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 173 - 173
1 Dec 2013
Sonntag R Koch S Merziger J Rieger JS Reinders J Reiner T Kretzer JP
Full Access

Background. Migration analysis after total joint arthroplasty are performed using EBRA analysis (Krismer et al., 1997) or - more accurate but also much more cost-intensive and time-consuming – via radiostereometric analysis (RSA). For the latter, additional radiographs from two inclined perspectives are needed in regular intervals in order to define the position of the implant relative to tantalum bone markers which have been implanted during surgery of the artificial joint (Fig. 1). Modern analysis software promises a migration precision along the stem axis of a hip implant of less than 100 μm (Witvoet-Brahm et al., 2007). However, as the analysis is performed semi-automatically, the results are still dependent on the subjective evaluation of the X-rays by the observer. Thus, the present phantom study aims at evaluating the inter- and intra-observer reliability, the repeatability as well as the precision and gives insight into the potential and limits of the RSA method. Materials and Methods. Considering published models, an RSA phantom model has been developed which allows a continuous and exact positioning of the prostheses in all six degrees of freedom (Fig. 2). The position sensitivities of the translative and rotative positioning components are 1 μm and 5 to 24, respectively. The roentgen setup and Model-Based RSA software (3.3, Medis specials bv, Leiden, Netherlands) was evaluated using the SL-PLUS® standard hip stem (size 7, Smith & Nephew, Baar, Switzerland). The inter-observer (10 repetitions) and intra-observer (3 observers) reliability have been considered. Additionally, the influences of the model repositioning and inclination as well as the precision after migration and rotation along the stem axis are investigated. Results and Discussion. Precision along the stem axis was determined to 161 μm (± 230 μm), in the lateral plane 100 μm (± 85 μm) and maximal rotations to 0.524° (± 1.268°). High reproducibility (intra-observer reliability) is reported with relevant influences of the inclination of the implant on the radiograph, in particular for the first clinical scene which serves as a reference. Deviations after translations along the stem axis are 0.37 ± 1.92% and −3.28 ± 6.62% after rotations. In conclusion, the precision given by the software producer of less than 100 μm could not be verified. Beside the limitations from the software, potential sources of errors are the subjective analysis by the observer, a small number of bone markers and the positioning of the implant (patient) during X-ray examination. Though, Model-Based RSA largely outmatches the EBRA approach in terms of measuring implant migration. However, standardization of the X-rays and RSA analysis is recommended


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 89 - 89
1 Sep 2012
Amirault DJ Gross M Hennigar A Laende E Dunbar MJ
Full Access

Purpose. The foam metal backed Advance BioFoam Knee Arthroplasty components utilize a porous titanium coating on the underside of the tibial baseplate, intended to promote bone in-growth and provide a more robust bone-implant interface without cement. There is also a version of the Biofoam Advance that incorporates screwed fixation that allows for augmented fixation with up to four titanium screws; however, it is not clear that this augmentation is necessary. The purpose of this study was to employ radiostereometric analysis (RSA) to compare implant migration in a randomized controlled trial of this implant design with or without screw fixation. Method. Fifty-one patients were randomized to receive a BioFoam total knee replacement (Wright Medical Technologies) with or without screw fixaiton. During surgery, eight tantalum markers, one millimetre in diameter, were inserted into the proximal tibia. Using a calibration box, stereo RSA radiographs were taken post-operatively and then again at six weeks and three, six and 12 months following surgery. Model Based RSA was used with 3D models of the tibial component to measure migration. Health status and functional outcome measures were recorded to quantify functional status of subjects before surgery and at each follow-up interval. Results. The migration results at one year, calculated as maximum total point motion (MTPM) were 1.751.93 mm for with screw fixation and 1.431.41 mm without screw fixation (p value =0.575). The clinical precision of the MTPM metric is 0.33 mm, calculated as the standard deviation of measurements made from double exams of all patients. There were no significant differences between groups for all other outcomes. Conclusion. The migration results at one year indicate that the addition of screws does not impact implant fixation in the short term. Longer term monitoring of the migration of these two implant groups will continue. Although higher than the migration seen with cemented tibial components, the amount of migration is comparable to other uncemented designs


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 538 - 538
1 Nov 2011
Lebel B Pineau V Gouzy S Geais L Vielpeau C
Full Access

Purpose of the study: Several authors have focused attention on the kinematics of total knee arthroplasty. In vitro studies have shown the influence of prosthetic kinematics on wear of the tibial insert. In vivo, investigations are limited for this important parameter. We propose computer algorithm which gives a linear assessment of femur penetration into the tibial insert. The purpose of this work was to test this measurement by radiostereometric analysis (RSA) on pre-worn prosthesis models. Material and methods: A resin plateau was manufactured with four Triatlhon posterior stabilized inserts. Three of these inserts were pre-worn on the medial glenoid; wear varied from 0.8 to 1.2 mm. The wear pattern was controlled by a computer program in order to localize it on a posteromedial gliding band posteriorly to the posterior stabilization implant. A femoral component was implanted on dry bone and loaded on a simulator. RSA images were obtained for each of the plateau. Five series of images were obtained from 0 to 40° flexion. The measurement method consisted in defined a perfect middle plane based on the analysis of tantalum beads embedded in the resin plateau, the to define the point the closest to this plane belonging to the medial condyle. The norm of the normal vector for this plane passing through the lowest point of the femur was the reference. The difference of the norms of the vectors constructed from the healthy plateau and the worn plateaus was defined as penetration of the femur into the tibia insert. The rood mean square (RMS) method was used to measure intraobserver variability and the interclass coefficient of correlation (ICC) was determined. Results and Discussion: Our results were encouraging. 0.8/to 1.12 mm wear was detected with very good accuracy. The data spread was however wide, irrespective of the wear value. The images in flexion of this model provided the most reliable readings. This study is the first offering an approach to wear measurement in vivo. The data spread should be improved by fine tuning the experimental model and the pre-wear pattern. Conclusion: In vivo measurement of TKA wear remains a challenge in clinical medicine. Our work demonstrate the feasibility of using RSA


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 534 - 534
1 Nov 2011
Pineau V Lebel B Gouzy S Emily S Dutheil J Vielpeau C
Full Access

Purpose of the study: The concept introduced by Gilles Bousquet is an effective arm against dislocation of total hip arthroplasty (THA), as has been demonstrated in clinical series with a long follow-up. There remain certain questions concerning wear of dual mobility cups. We propose a radiostereometrical analysis (RSA) of femoral head migration in this type of implant. Our objective was to establish an accurate measurement and determine the intra- and interobserver variabilities. Material and methods: A THA model was implanted and loaded with a simulator. Penetration of the implants was measured using a specially designed polyethylene insert with increasingly concentric wear (from 0, 0.25, 0.5 to 0.75 mm). Three investigators analysed (7 times in a double-blind protocol) the RSA images of these four inserts. The investigators were an expert (I), well-trained (II), naive (III). The accuracy of the measurement as well as the intra- and interobserver variabilities were determined using the root mean square (RMS) method, the interclass coefficient of correlation (ICC), the Bland and Altman analyses, and weighted Kappa analysis. Results: Regarding accuracy, the RMS was 0.0388 [CI95: 0.02266–0.05564]. The mean error for preworn inserts was respectively 0.022mm (for 0.25mm prewear), 0.59mm (for 0.5mm), and 0.022mm (for 0.75mm). The intra-observer ICC was 0.9714 [0.9028–0.9918] for investigator I. The interobserver ICCs between investigators I and II and between I and III were respectively 0.943 and 0.968. The weighted kappa coefficients between I and II and between I and III were 0.827 and 0.849. The Bland and Altman analysis confirmed these results. Discussion: Several RSA protocols could be designed to measure wear of the dual mobility cup. We chose detection of the wear pattern instead of the tantalum beads method. Our protocol, using a simple geometric model and not the manufacturers CAD files, showed an accuracy comparable with manufacturing tolerances with low variability. Conclusion: This study validated our measurement method, a prerequisite for a randomized multicentric study which has been initiated to compare, by RSA, penetration of the head into the double mobility insert versus a fixed insert


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 14 - 14
1 Jan 2016
Grosser D Mercer G Wilson C Nilsson K Krishnan J
Full Access

Background. Safety and efficacy of novel prostheses relies on the determination of early implant migration and subsequent risk of loosening. Radiostereometric Analysis (RSA) has been used to evaluate the clinical failure risks of femoral stems by reporting distal migration, a measure of stem subsidence, when examining early migration characteristics. The migratory patterns of femoral stems, 24 months postoperatively, have provided a surrogate outcome measure to determine implant stabilisation and predict long-term performance and survivorship. RSA assessed femoral stem migration and provided comparison of the early migration characteristics with published data of a clinically established counterpart. Methods. Twenty five patients undergoing primary total hip arthroplasty were implanted with a hydroxyapatite-coated femoral stem. The median age was 65 years (range, 43–75 years). During surgery tantalum markers were attached onto the distal tip and shoulder of the stem. Eight tantalum markers were inserted into the femur, four placed in each of the greater and lesser trochanter. RSA examinations were performed postoperatively at 4 to 5 days, 6, 12 and 24 months. Eleven patients who had complete RSA follow-up as well as the valid data from five patients were analysed to determine the movement of the femoral stem relative to the femur and were compared to the published data of a clinically established counterpart. Results. At 24 months the magnitude of migration of the femoral stem translations for the y axis of movement was 0.32 mm (range, 0.00 to 2.04 mm) (Figure 1). The data demonstrates that this migration of the femoral stem occurred primarily in the first 6 months postoperatively and that the migration characteristics exhibit a pattern of implant stabilisation between 6 and 24 months. At 24 months the magnitude of migration of the femoral stem rotations for the longitudinal y axis of movement was 0.60. o. (range, 0.08 to 2.08. o. ). The data demonstrates continuing migration of the femoral stem at 12 months postoperatively with early indications of implant stabilisation between 12 and 24 months. At 24 months the mean subsidence/distal migration of the femoral stem was 0.20 mm (range, −2.04 to 0.32 mm) (Figure 2). At 6 months, two patients (12.5%) exhibited subsidence greater than 0.50 mm with one demonstrating a mean subsidence of 2.00 mm. Between 6 and 24 months these two patients exhibited no more than 0.04 mm of subsidence (Figure 3). The mean retroversion rotation of the stem was 0.10. o. (range, −0.99 to 2.08. o. ). One patient rotated more than 2.00. o. into retroversion at 12 and 24 months postoperatively. Conclusions. In comparison the data demonstrates less stem subsidence and retroversion rotation than published data for a cementless hydroxyapatite-coated femoral stem when observing early migration characteristics. The magnitude and pattern of migration exhibited is indicative of good clinical outcomes and is comparable with a clinically established counterpart after short-term follow-up with RSA. These findings and comparisons highlight the early migration characteristics of a hydroxyapatite-coated femoral stem, however the analysis and comparison of the migratory pattern and characteristics over the mid-term follow-up will confirm implant stabilisation


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 387 - 387
1 Jul 2010
Dahl J Rydinge J Rohrl S Snorrason F Nordsletten L
Full Access

Introduction: C-stem is a triple taper polished femoral stem. The rationale for this design is to achieve an evenly distributed proximal loading of the cement mantle. This design is thought to enhance stability of the stem inside the mantle and lead to bone remodelling medially. There is to our knowledge no randomized trial comparing this stem to a well documented stem. We chose to compare it to the best documented stem in the Norwegian arthroplasty register, the Charnley monoblock. Methods: 70 patients scheduled for total hip replacement were randomized to either C-stem or Charnley monoblock. All received a 22 mm stainless steel head, OGGEE cup and Palacos Cement with Gentamycin. We used a transgluteal approach in all cases. Harris and Oxford hip scores were measured preoperatively and after two years. Standard X-rays were taken postoperatively and after two years. Radiostereometry (RSA) was done postoperatively and after 3,6,12 and 24 months. Results: There was no significant difference in Harris or Oxford hip scores after two years. RSA after two years: (table deleted). Discussion: Polished tapered stems are designed to sink inside the mantle. Our results confirm this theory for the C-stem. The subsidence is comparable to other collarless tapered stems with good long-term survival. For all other migrations/rotations the C-stem is as stable as the Charnley monoblock. This predicts good long-term results for this stem


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_V | Pages 4 - 4
1 Mar 2012
Karuppiah S Downing M Broadbent R Christie M Carnegie C Ashcroft G Johnstone A
Full Access

Due to its popularity of intramedullary nails (IMN) high success rate, newer design (titanium) IMN system have been introduced to replace stainless steel system. However the stability provided by the titanium IMN

may not be adequate, there by influencing the union rate.

We aimed to compare the results of both IMN systems via prospective clinical study and biomechanical testing using RSA.

Biomechanical study

This study was done in an experimental set-up which consisted of a physically simulated femoral shaft fractures models fixed with a stainless steel (Russell Taylor) or Titanium (Trigen) IM nailing system. Two common fracture configurations with stimulated weight bearing conditions were used and the axis of fragment movements recorded.

Clinical study

The data on two groups of patients were collected as part of a prospective cohort study. Details of the implant, such as size of nail, cross screw lengths, screw thickness, etc. was collected. Patients were followed up for a minimum of 4 months and details of clinical complications recorded


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 136 - 136
1 Jul 2014
Penny J Ding M Ovesen O Varmarken J Overgaard S
Full Access

Summary

Despite high revision rates, the mean two year migration of the ASRTM cup is within an acceptable threshold. Slightly higher migration rates found for the M2a- Magnum™ Porous Coated Acetabular Component but longer follow up is needed to establish if this implant is at risk.

Introduction

RSA can detect the migration of an implant, and continuous migration is a predictor for failure (1). The ASRTM resurfacing implant was withdrawn from the marked due to excessive failure rate but showed initial femoral component stability. The aim of this study was to investigate the initial implant stability for the ASR cup as a possible explanation for the high revision rate, and to compare it to another metal on metal (MoM) cup.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 392 - 392
1 Jul 2010
Dahl J Nivbrant B Søderlund P Nordsletten L Röhrl SM
Full Access

Introduction: Increased wear is associated with aseptic loosening and late dislocations. Hard on hard bearings may reduce wear but still have topics of concern such as free metal ions in metal on metal bearings and the risk for fracture in ceramic articulations. Ceramic heads against conventional polyethylene is also used with the intention to reduce wear. But this effect has not been conclusively documented in the literature and is still discussed. 87 patients were operated consecutively by the same surgeon with the same surgical technique. All patients received a cemented all poly cup sterilized with irradiation in inert atmosphere and a cemented stem. Head size was 28 mm in all patients. 40 patients received cobalt-chrome heads and 47 patients aluminiumoxid heads. The patients were followed with RSA for 10 years and analysed for wear.

Results: Mean (SEM) wear for the group with cobalt chrome heads was 0.93 mm (0.13) and for the group with aluminiumoxide was 0.43 mm (0.08) (p = 0.001).

Discussion: We found significantly less wear with aluminumoxide heads compared to cobalt-chrome heads. The wear results in the cobalt-chrome group correlate well to wear values in the literature for conventional polyethylene. Although the polyethylene in this study is partly cross-linked (3Mrad) it is not clear whether these results can be extrapolated directly to the use of highly cross-linked PE. If longer follow-ups confirm the mechanical stability of highly cross-linked PE, ceramic heads might contribute additionally to the reduction of wear.

In conclusion we found significantly reduced wear for aluminumoxide heads compared to cobalt chrome heads which could be beneficial for young and active patients.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 83 - 83
1 Jan 2016
Nebergall A Malchau H Greene M
Full Access

Introduction

RSA is widely accepted as a precise method to asses wear and migration early in the postoperative period. In traditional RSA, one segment defines both the acetabular shell and the polyethylene liner. However, inserting beads into the liner permits employment of the shell and liner as two separate segments, thus enabling distinct analysis of the precision of three measurement methods in determining wear and acetabular shell migration. The purpose of this in vivo follow-up study was to determine if assigning the shell and liner as one combined, or two individual segments affected the precision of RSA measurements of wear and shell stability.

Methods

The UmRSA program was used to analyze the double examinations of 51 hips to determine if there was a difference in precision among 3 measurement methods: the shell only, the liner only, and the shell + liner combined segment. Tantalum beads were inserted into the liner and pelvic bone surrounding the shell intraoperatively for the purpose of RSA. Polyethylene wear was measured using point motion of the center of the head with respect to 3 different segments: 1) liner only, 2) the shell only and, 3) shell + liner segment. Cup stability was measured by segment motion comparing the stable pelvic segment to 1) the liner segment, 2) the shell only segment, and 3) the shell + liner segment. The Wilcoxon paired signed-ranks test was used to determine differences in condition number and bead counts among the 3 measurement methods (p ≤0.05).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 64 - 64
1 Sep 2012
Humad A Freeman B Moore R Callary S Halldin K
Full Access

Anterior lumbar inter-body fusion (ALIF) is a surgical procedure that is available to chronic lower back pain patients who fail to respond to conservative treatments. Failure to achieve fusion may result in persistence of pain. Fusion of the lumber vertebral segment is more accurately assessed using fine-cut helical Computed tomography (CT) scans (0.25 mm thickness slices). Unfortunately this technique exposes the body to high radiation dose with hazard of increase risk of late malignancy. An alternative imaging tool is radiostereometry (RSA) which developed as a means to determine the magnitude of relative motion between two rigid bodies. In this study we used RSA to detect movement at the fused lumbar segment (ALIF site) during flexion and extension and compare the results obtained with fine-cut helical CT scan using histopathology as final gold standard assessment tool. ALIF of three levels of lumbar spine (L1-L2, L3-L4, and L5-L6) was done in 9 sheep. The sheep divided into three groups (3sheep each). The first group had RSA assessment immediately, 3, and 6 months after surgery. The second group had RSA immediately, 3, 6, 9 months after surgery. The third group had an RSA immediately, 3, 6, 9, 12 months after surgery All the animals were humanly killed immediately after having the last scheduled RSA (group1, group2, and group 3 sheep were killed 6 month, 9month and 12 months after surgery respectively). This followed by in vitro fine cut CT and histopathology after the animals are scarified. Micro CT scan has been also used to identify the area where histopathology slide should be made to pick up fusion. Fine cut CT scan assessment for all sheep were done. The CT scan has been reported by two independent radiologists. Histopathology has been started and will finish in 2 weeks. RSA showed there was significant increasing stiffness of the spine though the fused segments as the time pass on compare to immediate postoperative assessment. CT scan were done and showed variable fusion though out the spinal segments. Histopathology of all sheep has been started and the results will be available in 2 weeks which will be followed by statistical assessment to decide how accurate RSA compare to CT scan in assessment of fusion


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with larger articulations remains encouraging for the future clinical performance of this material. Cite this article: Bone Jt Open 2023;4(11):839–845


Bone & Joint Open
Vol. 4, Issue 5 | Pages 385 - 392
24 May 2023
Turgeon TR Hedden DR Bohm ER Burnell CD

Aims. Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Methods. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m. 2. (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples t-tests were used to compare to published thresholds. Results. Mean acetabular subsidence from baseline to 24 months was 0.087 mm (SD 0.152), below the critical threshold of 0.2 mm (p = 0.005). Mean femoral subsidence from baseline to 24 months was -0.002 mm (SD 0.194), below the published reference of 0.5 mm (p < 0.001). There was significant improvement in patient-reported outcome measures at 24 months with good to excellent results. Conclusion. RSA analysis demonstrates excellent fixation with a predicted low risk of revision at ten years of this novel reverse total hip system. Clinical outcomes were consistent with safe and effective hip replacement prostheses. Cite this article: Bone Jt Open 2023;4(5):385–392


Bone & Joint Open
Vol. 5, Issue 1 | Pages 37 - 45
19 Jan 2024
Alm CE Karlsten A Madsen JE Nordsletten L Brattgjerd JE Pripp AH Frihagen F Röhrl SM

Aims. Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Methods. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft. Results. Similar migration profiles were observed in all directions during the course of healing. At one year, eight patients in the SHS group and 12 patients in the TSP group were available for analysis, finding a clinically non-relevant, and statistically non-significant, difference in total translation of 1 mm (95% confidence interval -4.7 to 2.9) in favour of the TSP group. In line with the migration data, no significant differences in clinical outcomes were found. Conclusion. The TSP did not influence the course of healing or postoperative fracture motion compared to SHS alone. Based on our results, routine use of the TSP in AO/OTA 31-A2 trochanteric fractures cannot be recommended. The TSP has been shown, in biomechanical studies, to increase stability in sliding hip screw constructs in both unstable and intermediate stable trochanteric fractures, but the clinical evidence is limited. This study showed no advantage of the TSP in unstable (AO 31-A2) fractures in elderly patients when fracture movement was evaluated with radiostereometric analysis. Cite this article: Bone Jt Open 2024;5(1):37–45


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 875 - 883
1 Jul 2022
Mills K Wymenga AB van Hellemondt GG Heesterbeek PJC

Aims. Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA). Methods. This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made. Micromotion of the femoral and tibial components was assessed using model-based RSA software (RSAcore). The clinical outcome was evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (pain and satisfaction). Results. The median total femoral translation and rotation at ten years were 0.39 mm (interquartile range (IQR) 0.20 to 0.54) and 0.59° (IQR 0.46° to 0.73°) for the cemented group and 0.70 mm (IQR 0.15 to 0.77) and 0.78° (IQR 0.47° to 1.43°) for the hybrid group. For the tibial components this was 0.38 mm (IQR 0.33 to 0.85) and 0.98° (IQR 0.38° to 1.34°) for the cemented group and 0.42 mm (IQR 0.30 to 0.52) and 0.72° (IQR 0.62° to 0.82°) for the hybrid group. None of these values were significantly different between the two groups and there were no significant differences between the clinical scores in the two groups at this time. There was only one re-revision, in the hybrid group, for infection and not for aseptic loosening. Conclusion. These results show good long-term fixation with no difference in micromotion and clinical outcome between fully cemented and hybrid fixation in rTKA, which builds on earlier short- to mid-term results. The patients all had type I or II osseous defects, which may in part explain the good results. Cite this article: Bone Joint J 2022;104-B(7):875–883


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 19 - 26
1 Jan 2022
Sevaldsen K Schnell Husby O Lian ØB Farran KM Schnell Husby V

Aims. Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line cementing technique of the femoral stem, designed to achieve stem press-fit, challenges this opinion. We compared the migration of a highly polished stem with force-closed design by standard and line-to-line cementing to investigate whether differences in early migration of the stems occur in a clinical study. Methods. In this single-blind, randomized controlled, clinical radiostereometric analysis (RSA) study, the migration pattern of the cemented Corail hip stem was compared between line-to-line and standard cementing in 48 arthroplasties. The primary outcome measure was femoral stem migration in terms of rotation and translation around and along with the X-, Y-, and Z- axes measured using model-based RSA at three, 12, and 24 months. A linear mixed-effects model was used for statistical analysis. Results. Results from mixed model analyses revealed a lower mean retroversion for line-to-line (0.72° (95% confidence interval (CI) 0.38° to 1.07°; p < 0.001), but no significant differences in subsidence between the techniques (-0.15 mm (95% CI -0.53 to 0.227; p = 0.429) at 24 months. Radiolucent lines measuring < 2 mm wide were found in three and five arthroplasties cemented by the standard and line-to-line method, respectively. Conclusion. The cemented Corail stem with a force-closed design seems to settle earlier and better with the line-to-line cementing method, although for subsidence the difference was not significant. However, the lower rate of migration into retroversion may reduce the wear and cement deformation, contributing to good long-term fixation and implant survival. Cite this article: Bone Joint J 2022;104-B(1):19–26


Bone & Joint Open
Vol. 2, Issue 9 | Pages 737 - 744
1 Sep 2021
Øhrn F Lian ØB Tsukanaka M Röhrl SM

Aims. Medial pivot (MP) total knee arthroplasties (TKAs) were designed to mimic native knee kinematics with their deep medial congruent fitting of the tibia to the femur almost like a ball-on-socket, and a flat lateral part. GMK Sphere is a novel MP implant. Our primary aim was to study the migration pattern of the tibial tray of this TKA. Methods. A total of 31 patients were recruited to this single-group radiostereometric analysis (RSA) study and received a medial pivot GMK Sphere TKA. The distributions of male patients versus female patients and right versus left knees were 21:10 and 17:14, respectively. Mean BMI was 29 kg/m. 2. (95% confidence interval (CI) 27 to 30) and mean age at surgery was 63 years (95% CI 61 to 66). Maximum total point motions (MTPMs), medial, proximal, and anterior translations and transversal, internal, and varus rotations were calculated at three, 12, and 24 months. Patient-reported outcome measure data were also retrieved. Results. MTPMs at three, 12, and 24 months were 1.0 mm (95% CI 0.8 to 1.2), 1.3 mm (95% CI 0.9 to 1.7), and 1.4 mm (0.8 to 2.0), respectively. The Forgotten Joint Score was 79 (95% CI 39 to 95) and Knee Injury and Osteoarthritis Outcome Score obtained at two years was 94 (95% CI 81 to 100), 86 (95% CI 75 to 93), 94 (95% CI 88 to 100), 69 (95% CI 48 to 88), and 81 (95% CI59 to 100) for Pain, Symptoms, Activities of Daily Living, Sport & Recreation, and Quality of Life, respectively. Conclusion. In conclusion, we found that the mean increase in MTPM was lower than 0.2 mm between 12 and 24 months and thus apparently stable. Yet the GMK Sphere had higher migration at one and two years than anticipated. Based on current RSA data, we therefore cannot conclude on the long-term performance of the implant, pending further assessment. Cite this article: Bone Jt Open 2021;2(9):737–744


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims

Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems.

Methods

In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1035 - 1042
1 Dec 2021
Okowinski M Hjorth MH Mosegaard SB Jürgens-Lahnstein JH Storgaard Jakobsen S Hedevang Christensen P Kold S Stilling M

Aims

Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes.

Methods

A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications.