Advertisement for orthosearch.org.uk
Results 1 - 20 of 176
Results per page:
Bone & Joint Research
Vol. 14, Issue 2 | Pages 77 - 92
4 Feb 2025
Spanninga BJ Hoelen TA Johnson S Cheng B Blokhuis TJ Willems PC Arts JJC

Aims. Autologous bone graft (ABG) is considered the ‘gold standard’ among graft materials for bone regeneration. However, complications including limited availability, donor site morbidity, and deterioration of regenerative capacity over time have been reported. P-15 is a synthetic peptide that mimics the cell binding domain of Type-I collagen. This peptide stimulates new bone formation by enhancing osteogenic cell attachment, proliferation, and differentiation. The objective of this study was to conduct a systematic literature review to determine the clinical efficacy and safety of P-15 peptide in bone regeneration throughout the skeletal system. Methods. PubMed, Embase, Web of Science, and Cochrane Library were searched for relevant articles on 13 May 2023. The systematic review was reported according to the PRISMA guidelines. Two reviewers independently screened and assessed the identified articles. Quality assessment was conducted using the methodological index for non-randomized studies and the risk of bias assessment tool for randomized controlled trials. Results. After screening, 28 articles were included and grouped by surgical indication, e.g. maxillofacial procedures (n = 18), spine (n = 9), and trauma (n = 1). Published results showed that P-15 peptide was effective in spinal fusion (n = 7) and maxillofacial (n = 11), with very few clinically relevant adverse events related to P-15 peptide. Conclusion. This systematic literature review concluded that moderate- (risk of bias, some concern: 50%) to high-quality (risk of bias, low: 46%) clinical evidence exists showing equivalent safety and efficacy in bone regeneration using a P-15 peptide enhanced bone graft substitute compared to ABG. P-15 peptide is safe and effective, resulting in rapid bone formation with a low probability of minor complications. Cite this article: Bone Joint Res 2025;14(2):77–92


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims. Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods. Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results. The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion. The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC. Cite this article: Bone Joint Res 2024;13(4):137–148


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 13 - 13
22 Nov 2024
McNally M Dietz M Piuzzi N Chen A Parvizi J Stolarski E Pelt C Rodriguez-Quintana D Trautner B Dobbins D
Full Access

Aim. Antimicrobial peptides occur naturally in our intrinsic immune system. PLG0206 is a novel, engineered, 24-amino acid peptide which has broad-spectrum antimicrobial activity, including in biofilm and against multi-drug resistant pathogens (1,2). This is the first clinical study to evaluate the safety and tolerability of PLG0206 when administered via an irrigation solution in patients with periprosthetic joint infections (PJI) following total knee arthroplasty (TKA) during debridement, antibiotics, and implant retention (DAIR). Secondary objectives were to evaluate pharmacokinetics (PK), biomarkers and initial clinical efficacy at one year post-DAIR procedure. Method. This prospective, multicenter, open-label, interventional study assessed two dose levels of PLG0206. Fourteen patients underwent revision for PJI after TKA. At the end of debridement, they received a single intra-articular irrigation of PLG0206 into the wound cavity lasting 15 minutes at concentrations of 3 mg/mL (n=7) or 10 mg/mL (n=7). Patients received post-operative care and intravenous/oral antimicrobial therapy as per their institutional guidelines. Patients were monitored for safety and signs of relapse or persistent infection for 12 months post study drug administration and PK and blood biomarkers were assessed. Results. All patients completed their final study assessment at Day 365. Over the 1-year follow-up, only one recurrence (7%) was noted at Day 169 in the low-dose cohort. Following dosing, nine patients (64.3%) had limited systemic exposure; maximum plasma concentration occurred 1-hour post-administration and declined rapidly to undetectable levels by 24 hours following treatment in all patients. The incidence of drug related treatment-emergent adverse events (TEAEs) was low. Two patients, both in the higher dose cohort, experienced a transient drug related TEAE; one of hypertransaminasaemia and one of neuralgia. Both events were moderate in severity and resolved within two weeks of onset. Conclusions. A single 15-minute irrigation of PLG0206 into the wound cavity of patients undergoing a DAIR procedure for PJI following TKA, is safe and well tolerated by patients. This new antimicrobial peptide offers a promising therapeutic option in musculoskeletal infection. The initial clinical efficacy is encouraging but now needs to be investigated in a much larger clinical trial


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 95 - 95
1 Nov 2018
Järvinen T
Full Access

CAR (CARSKNKDC) is a systemically administered wound-homing peptide that specifically recognizes angiogenic blood vessels and extravasates into sites of injury. CAR peptide requires heparan sulfate proteoglycans (HSPGs) for its cell penetrating activity. Syndecan-4 (SDC4) is a HSPG and binding to it triggers the wound re-epithelialization process. We have discovered that CAR peptide has the inherent ability to promote wound healing; wounds close and re-epithelialize significantly faster in CAR treated mice than in control groups (PBS and mutant peptide, i.e. mCAR injections). To delineate the molecular mechanism by which CAR accelerates wound healing, we focused on the requirement of HSPG binding for CAR peptide function. We demonstrate that CAR peptide endocytosis and its stimulation of keratinocyte cell migration are both dependent on SDC4. Finally, we show that the systemic administration of CAR peptide stimulates wound re-epithelialization only in WT mice, but not in SDC4 knockout (KO) mice. As SDC4 has very restricted expression in skin wounds, we propose that CAR peptide activates SDC4 function to promote re-epithelialization. CAR peptide may provide an entirely new way of enhancing wound healing, and perhaps tissue regeneration in general. This therapeutic approach is systemic, yet target organ- and cell- specific, and dependent on the naturally occurring SDC4 dependent migratory pathway that is crucial for tissue regeneration


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 14 - 14
1 Jan 2019
Warren JP Coe R Sikora S Miles DE Beales P Wilcox RK
Full Access

The purpose of this study was to develop a novel, minimally invasive therapy for nucleus pulposus augmentation without the need for major surgical incision. Two optimum patented self-assembling peptides based on natural amino acids were mixed with glycosaminoglycans (GAGs) to form reversible, tunable hydrogels that mimic the vital biological osmotic pumping action and aid in swelling pressure of the intervertebral disc (IVD). Separate peptide and GAG solutions can be switched from fluid to gel upon mixing inside the body. The gels were analysed using a series of complementary techniques (FTIR, TEM & rheometry) to determine their cross-length scale structure and properties. Approaches to developing a clinical product were then developed including the incorporation of a fluorescent probe and a CT contrast agents to aid visualization of the gels, and a semi-automatic syringe driver rig, incorporating a pressure sensor, for the delivery of the solutions into the intervertebral discs. The efficacy of the procedure in restoring disc height and biomechanics was examined using chemically degenerated bovine caudal samples. It was found the presence of the GAGs stabilized the peptides forming stiffer gels, even upon injection through a long (∼10cm) small gauge needle. The injected gels were easily visualized post injection by microCT and by eye during dissection under visible and UV light. It was also noted that following injection, the disc height of the degenerated samples was restored to a similar level of that observed for native discs. A hydrogel has been developed that is injected through a narrow bore needle using a semi-automatic delivery rig and forms a self-assembled gel in situ which has shown to restore the disc height. Further tests are now underway to examine their biomechanical performance across more physiological time periods


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 48 - 48
1 Nov 2016
Albesher M Grant M Epure L Huk O Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial disease that affects millions of Canadians. Although, there is not one specific mechanism that causes OA, the biological outcome is cartilage degradation. The articular cartilage in joints is composed primarily of the proteoglycan aggrecan and type II collagen (Col II) which together provide cartilage with functional properties. In OA, the imbalance of the anabolic and catabolic activities of chondrocytes favors cartilage catalysis. The main inflammatory cytokine involved in cartilage degradation is interleukin (IL) 1β. It has previously been demonstrated that Link N, a 16 residue peptide derived from proteolytic cleavage of link protein, can stimulate matrix proteins in normal cartilage and intervertebral discs (IVDs). Recently, we showed that a shorter sequence of Link N (sLink N), consisting of the first 8 residues of the peptide, has the potential to increase synthesis of matrix proteins in IVD cells in vitro and stimulate repair in ex vivo IVD organ culture. There are currently no treatments that actively repair cartilage in OA joints. In the present study, we aimed to evaluate the potential of sLink N as a therapeutic agent in the repair of OA cartilage. OA cartilage was isolated from four donors undergoing total knee replacement (50–70 y). Cells were recovered from the cartilage of each knee by sequential digestion with Pronase followed by Collagenase, and expanded in PrimeGrowth culture medium (Wisent Bioproducts, Canada; Cat# 319–510-CL, −S1, and −S2). After 7 days in culture, cells were treated for 24h with sLink N (0.5, 5, 50, 500 or 5000 ng/ml) or sLink N in combination with IL-1β (1 ng/ml) to mimic an inflammatory milieu. Conditioned media was collected and measured for proteoglycan (GAG) release using the safranin O and for Col II synthesis by Western blotting. Human articular cartilage explants including cartilage with subchondral bone were prepared from the same donors using the PrimeGrowth Isolation kit (Wisent, Canada) and cultured for 21 days in presence of IL-1β (1ng/ml) and sLink N (0.5, 5, 50, 500 or 5000 ng/ml). Aggrecan and Col II were extracted with guanidine buffer and measured by Western blotting. Treatment of OA chondrocytes significantly increased the GAG and Col II synthesis. The EC50 dose-response of sLink N on GAG synthesis was 67 ± 41 nM [65 ± 40 ng/ml] and the GAG synthesis reached a maximum of 194 ± 30% with the highest dose above control. When chondrocytes were cultured in the presence of IL-1β, GAG synthesis was also elevated by sLink N above control. Treatment of OA cartilage explants with sLink N increased the content of aggrecan and Col II even in the presence of IL-1β. Our results suggest that sLink N is a growth factor supplement that can increase cartilage matrix protein synthesis, and a chondroprotective agent, by modulating the catabolic effects of IL-1β. sLink N is the first small-peptide to demonstrate potential in cartilage repair of OA joints


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 43 - 43
1 Sep 2012
Hooper G Schouten B Prickett T Hooper A Yandle T Espiner E
Full Access

C-type natriuretic peptide is the most abundant natriuretic peptide in the central nervous system. It has been implicated in neurogenesis and may have a significant role in spinal regeneration. We postulated that the spinal concentration of CNP would be reflected in the plasma concentrations of both CNP and the pro-hormone (NTproCNP) and this may be an indicator of repair potential in spinal injuries. Concurrent plasma and CSF concentrations of CNP forms were measured in 51 subjects undergoing spinal anaesthesia for elective total hip and knee replacement. Associations with CNP activity and metabolism in CSF were sought by measuring CSF levels of cGMP and neprilysin respectively. Elevated concentrations of NTproCNP (1045±359 pmol/L) were found in CSF and greatly exceeded those of CNP (7.9±3.2 pmol/L). The ratio of NTproCNP to CNP in CSF (145±55) was much higher than in plasma (31±27). A significant inverse relation was found between plasma and CSF CNP concentrations (r=−0.29, p<0.05). cGMP and neprilysin were unrelated to CNP levels in CSF. Despite markedly elevated levels of NTproCNP in CSF, it is unlikely that these contribute to systemic levels in healthy adults. Identifying NTproCNP as the dominant CNP form in CSF opens up the possibility of its use in future studies exploring CNP regulation within the CNS and possible applications in diagnosis and monitoring of healing in patients with spinal cord injury


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 28 - 28
1 Mar 2010
Smucker JD Bobst JA Petersen E Fredericks D
Full Access

Purpose: B2A2-K-NS (B2A) is a synthetic receptor-targeted peptide that appears to amplify the biological response to rhBMP-2. In ectopic sites in vivo, B2A augments bony mineralization when combined with demineralized bone matrix. The purpose of this study was to determine if the synthetic peptide B2A2-K-NS coated on osteoconductive granules (B2A/G) enhances autograft fusion in a rabbit bilateral posterolateral spine fusion model. Method: Sixty skeletally mature New Zealand White Rabbits weighing 4.5–5.5 kg were entered into the study (IACUC #0511251). A single-level, bilateral posterolateral intertransverse process fusion was performed at L4-L5 with autogenous bone or an osteoconductive granule containing several coating concentrations of B2A. Animals were euthanized at 6 weeks post surgery. Results: Gross examination of the surrounding soft tissues and grafted area showed no adverse reactions to the osteoconductive granules with or without B2A. Radiographic fusion rates were similar to palpation fusion rates across all groups. When assessed by palpation, animals treated with 300 μg B2A/G had 80% fusion while those treated with 100 μg B2A/G (89%) and 50 μg B2A/G had 78% fusion. Animals receiving 0 μg B2A/G (granules only) had a fusion rate of 33% and autograft only animals had a fusion rate of 63%. Conclusion: In this model the B2A/G composition appeared to function as a graft enhancer and be more efficacious than autograft alone in this model. B2A peptide has a unique mechanism of action in that although it interacts with receptors for BMP-2, the action is mediated only in the presence of BMP-2 or an osteoinductive event. In this model, the decorticated TP and/or autogenous bone may have provided the necessary signals for B2A. These results suggest that B2A/G should be further investigated to determine mechanistic effects and clinical applications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 47 - 47
1 Aug 2020
Niedermair T Straub R Grässel S
Full Access

Previously, we reported impaired biomechanical bone properties and inferior bone matrix quality in tachykinin1 (Tac1)-deficient mice lacking the sensory neuropeptide substance P (SP). Additionally, fracture callus development is affected by the absence of SP indicating a critical effect of sensory nerve fibers on bone health and regeneration. For α-calcitonin gene-related peptide (α-CGRP)-deficient mice, a profound distortion of bone microarchitecture has also been described. We hypothesize that SP and α-CGRP modulate inflammatory as well as pain-related processes and positively affect bone regeneration during impaired fracture healing under osteoporotic conditions. Therefore, this study investigates the effects of SP and α-CGRP on fracture healing and fracture-related pain processes under conditions of experimental osteoporosis using SP- and α-CGRP-deficient mice and WT controls. We ovariectomized female WT, Tac1−/− and α-CGRP−/− mice (age 10 weeks, all strains on C57Bl/6J background) and set intramedullary fixed femoral fractures in the left femora 28 days later. We analyzed pain threshold (Dynamic Plantar Aesthesiometer Test) and locomotion (recorded at day and night, each for 1 hour, EthoVision®XT, Noldus) at 5, 9, 13, 16 and 21 days after fracture. At each time point, fractured femora were prepared for histochemical analysis of callus tissue composition (alcian blue/sirius red staining). Pain threshold is significantly higher in Tac1−/− mice 13 days after fracture and tends to be higher after 21 days compared to WT controls. In contrast, touch sensibility was similar in α-CGRP−/− mice and WT controls but compared to Tac1−/− mice pain threshold was significantly lower in α-CGRP−/− mice 13 and 16 days and tends to be lower 21 days after fracture. Locomotion of Tac1−/− mice during daylight was by trend higher 9 days after fracture and significantly higher 16 days after fracture whereas nightly locomotion is reduced compared to WT mice. Analysis of locomotion during daylight or night revealed no differences between α-CGRP−/− and WT mice. During early fracture healing phase, 5 and 9 days after fracture, transition of mesenchymal to cartilaginous callus tissue tends to be faster in Tac1−/− mice compared to WT controls whereas no difference was observed during late stage of fracture healing, 13, 16 and 21 days after fracture. In contrast, callus tissue maturation seems to be similar in α-CGRP−/− and WT mice. Our data indicate different effects of SP and α-CGRP on fracture healing under conditions of experimental osteoporosis as a model for impaired bone tissue. Lack of α-CGRP seems to have no effects, but loss of SP affects locomotion throughout osteoporotic fracture healing and fracture-related pain processes during late phases of osteoporotic fracture healing. This indicates a modified role of SP during fracture healing under impaired versus healthy conditions, where SP changed early fracture-related pain processes and had no influence on callus tissue composition


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 366 - 367
1 Mar 2004
Elmengaard B Bechtold J S¿balle K
Full Access

Aims: Early bone ingrowth is known to increase primary implant þxation and reduce the risk of early implant failure. RGD peptide (Arg-Gly-Asp) has been identi-þed as playing a key role in osteoblast attachment and proliferation on various surfaces. The aim of this study is to test whether a monolayer of RGD peptide on Ti implants will increase bone ingrowth in vivo. Methods: Controlled canine study (n=8). 6 x 10mm plasma sprayed porous coated implants (Ti6Al4V) was inserted as press-þt in the proximal tibia bilaterally. Observation period was 4 weeks. Implants was coated in a 100 μM solution of cylic (RGDfK) peptide for 24 hours (Biomet-Merck, Darmstadt, Germany). Two dogs had to be excluded due to wrong placement of the implants. Results are presented as median and range. Results: A signiþcant increase in bone/implant contact was seen for the RGD treated group (p< 0.05). Bone fraction at the interface was 0.18 (0.10–0.45) compared to 0.09 (0.05–0.14) for the control. Mechanical þxation, measured by push-out test, was increased. Shear strength was 85% higher for the RGD group; however this difference was not signiþcant. Conclusions: This study shows that implant surface treatment with RGD enhances early bone ingrowth to press-þtted implants. However, future studies will be preformed regarding coating integrity and long-term effects, as well as its performance under loaded conditions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 31 - 31
17 Nov 2023
Warren J Cowie R Jennings L Wilcox R Fermor H
Full Access

Abstract

Objectives

The aim of this study was to develop an in vitro GAG-depleted patella model and assess the biomechanical effects following treatment with a SAP:CS self-assembling hydrogel.

Methods

Porcine patellae (4–6 month old) were harvested and subject to 0.1% (w/v) sodium dodecyl sulfate (SDS) washes to remove GAGs from the cartilage. Patellae were GAG depleted and then treated by injection with SAP (∼ 6 mM) and CS (10 mg) in Ringer's solution through a 30G needle. Native, GAG depleted and SAP:CS treated patellae were tested through static indentation testing, using 15g load, 5mm indenter over 1hr period. The degree of deformation of each group was assessed and compared (Mann-Whitney, p<0.05). Native, GAG depleted, sham (saline only) and SAP:CS treated paired patellae and femurs were additionally characterized tribologically through sequential wear testing when undergoing a walking gait profile (n=6 per group). The cartilage surfaces were assessed and compared (Mann-Whitney, p<0.05) using the ICRS scoring system, surface damage was illustrated through the application of Indian ink.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 367 - 367
1 Jul 2008
Li G Wan C Wang H Carney D Ryaby J
Full Access

The thrombin-related peptide, TP508, a synthetic 23 amino acid peptide, has been shown to promote soft tissue, cartilage and fracture repair. We have previously demonstrated that two injections of TP508 have signifi-cantly enhanced bone consolidation in a rabbit model of distraction osteogenesis. This study was to test if a single injection of TP508 in a slow-releasing preparation will have the similar effects. Unilateral tibial osteoectomies were stabilized with M100 Orthofix lengtheners in 17 male adult NZW rabbits. After 7 days, lengthening was initiated at a rate of 1.4 mm/day for 6 days. The following treatments were given: Group 1: TP508 in saline (300ug/300ul, n=6) was injected into the osteotomy gap at day of surgery and into the lengthening gap at end of lengthening. Group 2 (Control): Dextran gel (300ul, n=6) and Group 3: 300ul Dextran gel mixed with microspheres containing 300ug TP508 (n=5), was injected into the lengthening gap at end of lengthening. All animals were terminated 2 weeks after lengthening. Bone formation was assessed by weekly radiography and the specimens were subject to pQCT, microCT and histology examinations. On radiographies there was more bone formation in the TP508 treated groups than that of the control group at 1st week post-lengthening and complete union was seen in 50% rabbits in Group 1, 33% in Group 2, and 60% in Group 3 at termination. The mean BMD of the regenerates was significantly higher in the TP508 treated groups than that of the control group (p< 0.05). MicroCT analysis demonstrated advanced bone formation in the TP508 treated animals. For histology, the regenerates were mainly consisted of woven bone of neocortilization and callus remodelling in Groups 1 and 3, whereas in Group 2, focal defects with cartilaginous tissues were frequently seen. In conclusion we have demonstrated that a single injection of TP508 in the form of slow releasing micro-spheres has enhanced bone consolidation during distraction osteogenesis. TP508 may therefore be applied in the slow-releasing preparation for augmenting bone formation at reduced doses, costs and risks of infections through repeated injections


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 102 - 102
1 Mar 2021
Tazawa R Minehara H Matsuura T Kawamura T Uchida K Inoue G Saito W Takaso M
Full Access

Segmental bone transport (SBT) using an external fixator is currently a standard treatment for large-diameter bone defects at the donor site with low morbidity. However, long-term application of the device is needed for bone healing. In addition, patients who received SBT treatment sometimes fail to show bone repair and union at the docking site, and require secondary surgery. The objective of this study was to investigate whether a single injection of recombinant human bone morphogenetic protein 2 (rhBMP-2)-loaded artificial collagen-like peptide gel (rhBMP-2/ACG) accelerates consolidation and bone union at the docking site in a mouse SBT model. Six-month-old C57BL/6J mice were reconstructed by SBT with external fixator that has transport unit, and a 2.0-mm bone defect was created in the right femur. Mice were divided randomly into four treatment groups with eight mice in each group, Group CONT (immobile control), Group 0.2mm/d, Group 1.0mm/d, and Group BMP-2. Mice in Group 0.2mm/d and 1.0mm/d, bone segment was moved 0.2 mm per day for 10 days and 1.0 mm per day for 2 days, respectively. Mice in Group BMP-2 received an injection of 2.0 μg of rhBMP-2 dissolved in ACG into the bone defect site immediately after the defect-creating surgery and the bone segment was moved 1.0 mm/day for 2 days. All animals were sacrificed at eight weeks after surgery. Consolidation at bone defect site and bone union at docking site were evaluated radiologically and histologically. At the bone defect site, seven of eight mice in Group 0.2mm/d and two of eight mice in Group 1.0mm/d showed bone union. In contrast, all mice in Group CONT showed non-union at the bone defect site. At the docking site, four of eight mice in Group 0.2 mm/d and three of eight mice in Group 1.0 mm/d showed non-union. Meanwhile, all mice in Group BMP-2 showed bone union at the bone defect and docking sites. Bone volume and bone mineral content were significantly higher in Group 0.2mm/d and Group BMP-2 than in Group CONT. HE staining of tissue from Group 0.2mm/d and Group BMP-2 showed large amounts of longitudinal trabecular bone and regenerative new bone at eight weeks after surgery at the bone defect site. Meanwhile, in Group CONT and Group 1.0mm/d, maturation of regenerative bone at the bone defect site was poor. Differences between groups were analyzed using one-way ANOVA and a subsequent Bonferroni's post-hoc comparisons test. P < 0.05 was considered significant. rhBMP-2/ACG combined with SBT may be effective for enhancing bone healing in large bone defects without the need for secondary procedures


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 223 - 223
1 Sep 2005
Li G McILmurray L Ryaby J Carney DH Wang H
Full Access

The thrombin-related peptide, TP508, is a synthetic 23 amino acid peptide, which represents the receptor binding domain of thrombin. TP508 mimics thrombin by interacting with receptors on cells involved in tissue repair. TP508 has been shown to enhance revascularization of injured tissue, and promote soft tissue wound healing, cartilage repair, and fracture repair. The aim of this study is to (1) test the effect of TP508 on bone regeneration during distraction osteogenesis; (2) study the chemotactic effect of TP508 on human osteoblasts. Unilateral tibial osteoectomies were performed and stabilized with MX100 Orthofix lengthener in 5 male adult NZW rabbits. After 7 days, distraction was initiated at rates of 1.4 mm / day for 6 days. TP508 (100 μg/ml, n=2; 10 μg/ml, n=1) or saline (300 μl, n=2) was injected into the osteotomy / lengthening gap at days 1, 7 and 14 post surgery. Animals were sacrificed at 2 weeks after leg lengthening. Bone formation in the regenerate was assessed by radiography, quantitative computed tomography (pQCT) and histology. For chemotaxis studies, MG63 cells were cultured on glass cover slips for three days, and then inverted onto a Dunn chamber slide and sealed with dental wax. Gradients of TP508 (1, 10, 100 μg/ml) were added to the outer well and plain medium to the inner well. A sequence of images of the cells between the wells was taken via a CCD camera for 9 hours at interval of 10 minutes. Movements of individual cells were tracked and statistically analysed by a specially written Macro program. The Rayleigh test for unimodal clustering was used to determine the directional chemotactic movements. The radiographic evaluation indicated a significant increase in new bone in the distraction regenerate in the TP508 treated groups at 1 and 2 weeks. pQCT images at 2 weeks demonstrated more advanced bone formation in the TP508 treated animals compared to the control. The mean total bone mineral density (BMD) of the regenerate, obtained from 3 slices was significantly greater (p = 0.019, t-test) in the TP508 treated group (BMD = 479.20 +/− 35.57 mg/ccm) than that in the saline control group (BMD = 355 +/− 2.83 mg/ccm). The histological evaluation supported the radiographic and the pQCT results. For chemotaxis study, no directional movements of the cells were found in the controls, whereas the MG63 cells were strongly chemotactic to TP508 at 1, 10 and 100 μg/ml concentrations. This preliminary study shows that administration of TP508 enhances bone formation during distraction osteogenesis in the rabbit. The findings also show that TP508 has a chemotactic effect on osteoblasts, consistent with the effect of TP508 on fracture repair. A large animal study is in the process to confirm these findings and explore the underlying mechanisms


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 33 - 33
1 Mar 2006
Cakmak G Bolukbasi S Kanatli U Dursun A Erdem O Yilmaz G
Full Access

Aim: Bone grafts and bone graft substitutes are often used at radical surgical procedures such as; trauma, congenital anomalies, tumor surgery, bone infections, revision arthroplasty surgery, spinal surgery. However autograft and allograft bone are frequently used, they have some limitations. ABM/P-15 (Pepgen P-15) is a combination of anorganic bovine derived hydroxyapa-tite matrix coupled with a synthetic-cell binding peptide (P-15). This tissue engineered particulate bone replacement graft has been established for the treatment of periodontal osseous defects. The aim of this study is to determine the effect of ABM/P-15 on the healing of a critical sized segmental defect in rat radius. Methods: 36 Wistar rats were used at this study. A critical sized segmental defect was created in each rat radius. 13 defects were filled with ABM/P-15 Flow (putty form), 12 defects were filled with ABM/P-15, and 11 defects were used as a control group. The rats were killed at 10 weeks. The healing of defects was evaluated with radiographic and histological studies. Results: The use of ABM/P-15 and ABM/P-15 Flow were demonstrated improved healing of segmental bone defects in rat radius on radiographic and histological studies compared with control group. Statistical evaluation showed that there were significant differences between control sites, and sites treated with P-15 and P-15 Flow (p< 0.005). The highest radiological and histological grades were achieved by P-15. Osteogenic proliferation was seen at the P-15 group more than P-15 flow. Conclusion: Segmental cortical bone defects may be treated with ABM/P-15 instead of bone allografts, and autografts. According to the radiologic and histological parameters measured in this study, the implantation of ABM/P-15 resulted in optimum healing of the segmental cortical bone defects


Little is known on how sensory nerves and osteoclasts affect degenerative processes in subchondral bone in osteoarthritis (OA). Substance P (SP) effects on bone are ambivalent but physiological levels are critical for proper bone quality whereas α-calcitonin gene-related peptide (αCGRP) has anabolic effects. Here, we aimed to analyse the influence of an altered sensory neuropeptide microenvironment on subchondral bone in murine OA. Transection of the medial meniscotibial ligament (DMM) of the right hind leg induced joint instability leading to development of OA. Subchondral bone of tibiae from wildtype (WT), alendronate-treated WT (ALN, osteoclast inhibition), αCGRP- and SP- (Tachykinin (Tac)1) knockout mice was analysed by micro-computed tomography 4 and 12 weeks after DMM or sham surgery. Bone resorption marker CTX-I was measured in serum. We observed osteophytosis in all DMM groups and ALN sham mice 4 weeks after surgery but also in sham groups 12 weeks after surgery. In subchondral bone, bone volume density (BV/TV) increased from 4 to 12 weeks after surgery in DMM WT and Tac1-/− mice. DMM WT mice additionally had increased trabecular numbers (Tb.N.) and decreased trabecular space (Tb.Sp.) over time. Sham mice also showed time-dependent alterations in subchondral bone. In sham WT and αCGRP-/− mice specific bone surface (BS/BV) decreased and trabecular thickness (Tb.Th.) increased from 4 to 12 weeks after surgery while subchondral BV/TV of αCGRP-/− mice increased. Comparison of subchondral bone parameters at each time point showed elevated BV/TV in ALN DMM compared to WT DMM mice 4 weeks after surgery. In addition, both ALN sham and DMM mice showed a reduced BS/BV compared to WT. 4 weeks after sham surgery Tb.Th. was highest in ALN mice. In DMM WT mice Tb.Sp. was higher compared to ALN and αCGRP-/−. 12 weeks after surgery (late OA stage), BS/BV of ALN sham mice was significantly reduced in relation to ALN DMM, WT and Tac1-/− sham, while Tb.Th. increased compared to WT. DMM significantly decreased Tb.N. and increased Tb.Sp. in Tac1-/− compared to sham 12 weeks after surgery. CTX-I concentrations were significantly higher in ALN compared to Tac1-/− mice 4 weeks after sham surgery. 12 weeks after sham surgery CTX-I concentrations of WT mice were increased compared to αCGRP-/− and Tac1-/− mice. Over time, DMM induced stronger changes in subchondral bone of WT mice compared to knockout strains. WT and αCGRP-/− sham mice also show alterations in bone parameters over time indicating age-related effects on bone structure. SP deficiency enhanced DMM-induced structural bone alterations in late stage OA emphasizing the importance of SP under pathophysiological conditions. Osteoclast inhibition with alendronate proved to be preservative for time-dependent changes of subchondral bone observed in both, DMM and sham mice. Interestingly, ALN treatment did not reduce bone turnover marker CTX-I, and additionally promoted early osteophyte formation in sham mice


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 24 - 24
1 Mar 2013
Hardwick T Kalia P Baawa-Ameyaw J Lozano D Sinha J Di Silvio L
Full Access

Introduction. Parathyroid hormone-related peptide (PTHrP) has been shown to be an important regulator of bone remodelling1. The aim of this study was to investigate the effect of the N-terminal domain of PTHrP (1–36) on osteogenic and angiogenic gene expression in human osteoblasts (HOB) and human bone marrow stromal cells (hBMSCs). Materials and Methods. Primary hBMSC's and HOBs were cultured in standard or osteogenic media with different concentrations of PTHrP, either continuously for 8, 24, 48 h and 9 days, or with 3 cycles of intermittent exposure (24 h with PTHrP, 24 h without) over 6 days. Cell lysates were then processed for analysis of gene expression. Expression of the osteogenic markers runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP) and Collagen 1, and the angiogenic marker; vascular endothelial growth factor (VEGF), were measured. Results. Exposure to PTHrP for ≤ 48 hours resulted in an upregulation of the angiogenic marker VEGF and the osteogenic markers RUNX-2, ALP and Collagen 1 in both cell types, peaking at a 1 nM PTHrP. Conversely, continuous exposure for 9 days, resulted in a downregulation of all osteogenic and angiogenic gene expression. HOB cells exposed intermittently to PTHrP showed an upregulation in VEGF and ALP, peaking at 10nM PTHrP. Discussion and Conclusion. Continuous exposure for short durations (<48 hours) and intermittent exposures of both HOB cells and BMSC's to PTHrP upregulated both osteogenic and angiogenic gene expression. Continuous exposure to 9 days however had the opposite effect, with a downregulation in gene transcription


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 92 - 92
1 Jul 2020
Niedermair T Straub R Schirner S Seebröker R Grässel S
Full Access

Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell metabolism of cells isolated from young α-CGRP-deficient mice. We assume that aging processes differently affect bone cell metabolism in the absence and presence of α-CGRP. To further explore this hypothesis, we investigated and compared cell metabolism of osteoblasts and bone marrow derived macrophages (BMM)/osteoclast cultures isolated from young (8–12 weeks) and old (9 month) α-CGRP-deficient mice and age matched WT controls.

Isolation/differentiation of bone marrow macrophages (BMM, for 5 days) to osteoclasts and osteoblast-like cells (for 7/14/21 days) from young (8–12 weeks) and old (9 month) female α-CGRP−/− and WT control (both C57Bl/6J) mice according to established protocols. We analyzed cell migration of osteoblast-like cells out of femoral bone chips (crystal violet staining), proliferation (BrdU incorporation) and caspase 3/7-activity (apoptosis rate). Alkaline phosphatase (ALP) activity reflects osteoblast bone formation activity and counting of multinucleated (≥ 3 nuclei), TRAP (tartrate resistant acid phosphatase) stained osteoclasts reflects osteoclast differentiation capacity.

We counted reduced numbers of BMM from young α-CGRP−/− mice after initial seeding compared to young WT controls but we found no differences between old α-CGRP−/− mice and age-matched controls. Total BMM number was higher in old compared to young animals. Migration of osteoblast-like cells out of bone chips was comparable in both, young and old α-CGRP−/− and WT mice, but number of osteoblast-like cells was lower in old compared to young animals. Proliferation of old α-CGRP−/− BMM was higher when compared to age-matched WT whereas proliferation of old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation was lower. No differences in bone cell proliferation was detected between young α-CGRP−/− and age-machted WT mice. Caspase 3/7 activity of bone cells from young as well as old α-CGRP−/− mice was comparable to age-matched controls. Number of TRAP-positive multinucleated osteoclasts from young α-CGRP−/− mice was by trend higher compared to age-matched WT whereas no difference was observed in osteoclast cultures from old α-CGRP−/− mice and old WT. ALP activity, as a marker for bone formation activity, was comparable in young WT and α-CGRP−/− osteoblasts throughout all time points whereas ALP activity was strongly reduced in old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation compared to age-matched WT.

Our data indicate that loss of α-CGRP results in a reduction of bone formation rate in older individuals caused by lower proliferation and reduced activity of osteogenic cells but has no profound effects on bone resorption rate. We suggest that the osteopenic bone phenotype described in aged α-CGRP-deficient mice could be due to an increase of dysfunctional matured osteoblasts during aging resulting in impaired bone formation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2018
Niedermair T Schirner S Seebröker R Straub R Grässel S
Full Access

Previously, we have demonstrated reduced biomechanical bone strength and matrix quality in Tachykinin (Tac)1-deficient mice lacking the sensory neuropeptide substance P (SP). A similar distortion of bone microarchitecture was described for α-calcitonin gene-related pepide (α-CGRP)-deficient mice. In previous studies we observed alterations in cell survival and differentiation capacity of bone cells isolated from wildtype mice when stimulated with SP and α-CGRP. We assume that changes in sensory neurotransmitter balance modulate bone cell metabolism thereby possibly contributing to inferior bone quality. In order to explore this hypothesis, we investigated and compared metabolic parameters in osteoblasts and osteoclasts isolated from SP- and α-CGRP-deficient mice and wildtype (WT) controls.

Bone marrow-derived macrophages (BMMs) and osteoblast-like cells from female C57Bl/6J (WT-control), Tac1-deficient (Tac1-/−) and α-CGRP-deficient (α-CGRP-/−) mice were isolated and differentiated according to established protocols (Niedermair et al., 2014). Cell metabolism studies were performed for enzyme activity and cell survival.

We observed reduced numbers of BMM from Tac1-/− and α-CGRP-/− mice after initial seeding compared to WT but no changes in viability. Osteoblast-like cells from Tac1-/− mice tend to migrate out faster from bone chips compared to WT-controls whereas migration of osteoblast-like cells from α-CGRP-/− mice was not affected. Osteoblasts and osteoclast/BMM cultures from WT mice endogenously synthesize and secrete SP as well as α-CGRP at a picomolar range. We found no changes regarding BMM or osteoblast proliferation from both, Tac1-/− and α-CGRP-/− mice when compared to WT-controls. Caspase 3/7-activity was reduced by trend in osteoclast/BMM cultures of α-CGRP-/− mice and significantly reduced in osteoclast/BMM cultures of Tac1-/− mice compared to WT-controls. We found significantly higher Caspase 3/7-activity in osteoblasts of Tac1-/− mice after 14 days of osteogenic culture conditions when compared to WT-controls whereas osteoblasts of α-CGRP-/− mice were unaffected. Cathepsin K enzyme activity was significantly reduced in osteoclast/BMM cultures of Tac1-/− and α-CGRP-/− mice compared to WT-controls. ALP activity of Tac1-/− osteoblasts was higher after 7 days and reduced after 21 days of osteogenic culture compared to WT-controls whereas ALP activity of osteoblasts of α-CGRP-/− mice was unchanged.

Acccording to our in vitro observations, we suggest some reduction in bone resorption rate but concomitantly a reduction in bone formation rate in Tac1-/− mice compared to WT-controls resulting in a net bone loss in these mice as bone resorption is faster than bone formation. Furthermore, we assume that bone resorption rate is slightly reduced in α-CGRP-/− mice but bone formation rate seems to be unchanged. Therefore we hypothesize that additional conditions present in vivo might contribute to the inferior bone properties of α-CGRP-/− mice.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 35 - 35
2 Jan 2024
Schräder P Montoya A Labude-Weber N Eschweiler J Neuss S Fischer H
Full Access

While high-performance ceramics like alumina and zirconia exhibit excellent wear resistance, they provide poor osseointegration capacity. As osseointegration is crucial for non-cemented joint prostheses, new techniques have been successfully developed for biofunctionalizing high-performance ceramic surfaces. Stable cell adhesion can be achieved by covalently bound specific peptides. In this study we investigate the effect of sterilization processes on organo-chemically functionalized surfaces. To enhance the performance of alumina-toughened zirconia ceramics (ATZ), a 3-aminopropyldiisopropylethoxysilane (APDS) monolayer was applied and coupled with cyclo-RGD peptides (cRGD) by using bifunctional crosslinker bis(sulfosuccinimidyl)suberat (BS³). The samples were sterilized using e-beam or gamma-sterilization at 25 kGy, either before or after biofunctionalization with cRGD. Functionalization stability was investigated by contact angle measurements. The functionality of cRGD after sterilization was demonstrated using proliferation tests and cytotoxicity assays. Immunofluorescence staining (pFAK, Actin, DAPI) was conducted to evaluate the adhesion potential between the samples and human mesenchymal stem cells (hMSCs). Functionalized samples before and after sterilization showed no significant difference regarding their contact angles. A proliferation test demonstrated that the cells on functionalized samples proliferate significantly more than on untreated samples before and after sterilization. hMSCs showed a significant higher proliferation on gamma sterilized samples compared to all other groups after 14 days. It was confirmed that the samples did not exhibit cytotoxic behavior before or after sterilization. Fluorescence microscopy demonstrated that both, cells on sterilized and on non-sterilized samples, expressed high levels of pFAK-Y397. The investigated functionalization enables improved adhesion and proliferation of hMSCs and is stable against the investigated sterilization processes. This is of importance as the option of having a sterile product enables the start of the translation of this biofunctional coating towards preclinical and subsequently first-in-man applications. Acknowledgments: We acknowledge the financial support of the Federal Ministry of Education and Research, BMBF (13GW0452A-C)