Advertisement for orthosearch.org.uk
Results 1 - 20 of 154
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 66 - 66
2 Jan 2024
Burssens A
Full Access

Osteotomies in the musculoskeletal system are joint preserving procedures to correct the alignment of the patient. In the lower limb, most of the pre-operative planning is performed on full leg weightbearing radiographs. However, these images contain a 2-dimensional projection of a 3-dimensional deformity, lack a clear visualization of the joint surface and are prone to rotational errors during patient positioning. Weightbearing CT imaging has demonstrated to overcome these shortcomings during the first applications of this device at level of the foot and ankle. Recent advances allow to scan the entire lower limb and novel applications at the level of the knee and hip are on the rise. Here, we will demonstrated the current techniques and 3-dimensional measurements used in supra- and inframalleolar osteotomies around the ankle. Several of these techniques will be transposed to other parts in the lower limb to spark future studies in this field


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 47 - 47
14 Nov 2024
Daneshvarhashjin N Debeer P Andersen MS Verhaegen F Scheys L
Full Access

Introduction. Assessment of the humeral head translation with respect to the glenoid joint, termed humeral head migration (HHM), is crucial in total shoulder arthroplasty pre-operative planning. Its assessment informs current classification systems for shoulder osteoarthritis as well as the evaluation of surgical correction. In current clinical practice, HHM assessment relies on computed-tomography (CT) imaging. However, the associated supine position might undermine its functional relevance as it does not reflect the weight-bearing condition with active muscle engagement associated with the upright standing position of most daily activities. Therefore, we assessed to what extent HHM in a supine position is associated with HHM in a range of functional arm positions. Method. 26 shoulder osteoarthritis patients and 12 healthy volunteers were recruited. 3D shapes of the humerus and scapula were reconstructed from their respective CT scans using an image processing software. 3. , and their CT-scan-based HHMs were measured. Furthermore, all subjects underwent low-dose biplanar radiography . 4. in four quasi-static functional arm positions while standing: relaxed standing, followed by 45 degrees of shoulder extension, flexion, and abduction. Using a previously validated method implemented in the programming platforms. 5. , 3D shapes were registered to the pairs of biplanar images for each arm position and the corresponding functional HHM was measured. Bivariate correlations were assessed between the CT-based HHM and each functional arm position. Result. HHM in 45 degrees of flexion and extension both showed significant and strong correlations (r>0.66 and P<0.01) with HHM assessed in the supine position. However, such a high correlation was not found for relaxed standing and 45 abduction. Conclusion. Although HHM in a supine position correlates with HHM in 45-degree extension and flexion, it is poorly associated with the HHM in abduction and relaxed standing. These results may suggest the inclusion of more functionally-relevant patient positioning toward better-informed shoulder arthroplasty planning. Acknowledgement. Funding from PRosPERos-II Project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 19 - 19
1 Nov 2022
Agrawal P Gilbert R
Full Access

Abstract. Ramp lesions are meniscocapsular or meniscosynovial tears associated with chronic ACL injury and are postulated to occur because of disruption of meniscotibial ligament. Various techniques have been described in literature for their diagnosis and repair. Each of the described techniques have had some concerns. The authors, hereby, describe a novel technique for RAMP repair. Our Technique. Patient is positioned supine with the knee at 90 degrees with a side support. Standard arthroscopic portals are established. Ramp lesions are visualised through a trans-notch approach and probed simultaneously using an 18-guage needle posteromedialy. Once the diagnosis has been confirmed a posteromedial (PM) portal is established. The edges of the tear are freshened from the PM portal using a shaver or rasp. Knee Scorpion device (Arthrex) is then introduced through the PM which is loaded with No. 0 Fibrewire (Arthrex) in its lower jaw. The Scorpion device is deployed on the capsular side first, avoiding injury to the posterior structures and the suture loop is retrieved. Scorpion is loaded again with the other strand and is passed through the meniscal edge. A sliding knot is used. Ramp lesion is re-probed after tying a sliding knot for requirement of another suture. This technique provides us with an improved visualisation and diagnosis, better quality of debridement and complete closure of the ramp lesion using a simple suture device. In our experience this is a safe, successful and easily reproducible technique


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 75 - 75
1 Aug 2020
Axelrod D Al-Asiri J Johal H Sarraj M
Full Access

The purpose of this project was to evaluate North American trauma surgeon preferences regarding patient positioning for antegrade fixation of mid shaft femoral shaft fractures. This project was a cross sectional survey taken of orthopaedic fellows and staff surgeons, belonging to three organizations across North America. An estimated sample size was calculated a priori, while various online techniques were utilized to reduce non responder and fatigue bias. The survey was distributed multiple times to optimize yield. Two hundred twelve (212) participants responded in full, 134 (56%) of whom practiced in Canada. The majority of surgeons worked in level one trauma centres (74%), while 72% treated more than one femoral shaft fracture per week. The most common patient position for mid shaft fixation amongst all surgeons was lateral positioning with manual traction (68%), however community surgeons were significantly more likely to use a fracture table. The most common difficulties faced with using a fracture table were inability to achieve fracture reduction and peroneal nerve palsies. The majority (64%) of surgeons quoted a complication rate with fracture tables of greater than 1 per 100 cases. Lateral position with use of manual traction is the preferred set up for antegrade fixation of femoral shaft fracture in this large North American cohort of trauma surgeons. However, a large subset of community and non academic surgeons still prefer use of the fracture table. Amongst all respondents, a high rate of fracture table complications, including malreduction, were quoted. To date, there is no prospective data comparing these two options for patient positioning, and a randomized controlled trial may be an appropriate next step


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 48 - 48
1 Dec 2022
Yee N Iorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine: if ultra-low dose CT without sedation was feasible given the movement disorders in this population; what the radiation exposure was compared to standard pre-operative imaging; whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α = 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 68 - 68
1 Dec 2022
Yee N Lorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine:. if ultra-low dose CT without sedation was feasible given the movement disorders in this population;. what the radiation exposure was compared to standard pre-operative imaging;. whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α= 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 18 - 18
1 Jan 2022
Singhal A Jayaraju U Kaur K Clewer G
Full Access

Abstract. Background. With the increasingly accepted method of suprapatellar tibial nailing for tibial shaft fractures, we aimed to compare intraoperative and postoperative outcomes of infrapatellar (IP) vs suprapatellar (SP) tibial nails. Methods. A retrospective cohort analysis of 58 patients. 34 SP tibial nails over 3 years versus 24 IP tibial nails over a similar time frame. We compared; radiation exposure, patient positioning time (PPT), non-union rate and follow-up time. Knee pain in the SP group was evaluated, utilising the Hospital for Special Surgery (HSS) Knee injury and Osteoarthritis outcome score (KOOS). Results. 58 patients with a mean age of 43 years were included. Mean intraoperative radiation dose for SP nails was 61.78cGy (range 11.60 to 156.01cGy) vs 121.09cGy (range 58.01 to 18.03cGy) for IP nails (p < 0.05). Mean PPT for SP nails was 10 minutes vs 18 minutes for IP nails (p < 0.05). All fractures united in the SP group vs one non-union in the IP group. Mean follow-up was 5.5 months vs 11 months in the SP and IP group respectively. Mean KOOS was 7 (range 0 to 22) at 6 months for the SP group. Conclusion. The semi extended position (SP group) leads to reduced radiation exposure because of ease of imaging. All Patients in the SP group showed improved outcomes, with shorter follow-up and fracture union. The KOOS revealed SP nail patients had minimal pain and good knee function. This study establishes a management and PROMs baseline for ongoing evaluation of SP nails


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 9 - 9
1 Nov 2021
Farey J Chai Y Xu J Sadegpour A Jones DM Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems in total hip arthroplasty (THA) improve acetabular cup position, thereby reducing the risk of revision surgery for all causes as well as dislocation. We aimed to evaluate the registration accuracy of 3 alternate registration planes. A prospective, observational study was conducted with 45 THA in the supine position using two imageless navigation systems and 3 registration planes. Patient position was registered sequentially using an optical system (Stryker OrthoMap) and an inertial sensor-based system (Navbit Sprint) with 3 planes of reference: (Plane 1) an anatomical plane using the anterior superior iliac spines (ASISs) and the pubic symphysis; (Plane 2) a functional plane parallel to the line between the ASISs and the table plane; and, (Plane 3) a functional plane that was perpendicular to the gravity vector and aligned with the longitudinal axis of the patient. The 3 measurements of acetabular cup inclination and anteversion were compared with the measurements from postoperative computed tomography (CT) scans. For inclination, the mean absolute error was significantly lower for Plane 3 (1.80°) than for Plane 2 (2.74°), p = .038 and was lower for both functional planes than for the anatomical plane (3.75°), p < .001. For anteversion, the mean absolute error was significantly lower for Plane 3 (2.00°) than for Plane 2 (3.69°), p = .004 and was lower for both functional planes than for the anatomical plane (8.58°), p < .001. Patient registration using functional planes more accurately measured the acetabular cup position than registration using anatomic planes


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 329 - 337
8 May 2023
Khan AQ Chowdhry M Sherwani MKA McPherson EJ

Aims

Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs).

Methods

In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 363 - 369
22 May 2023
Amen J Perkins O Cadwgan J Cooke SJ Kafchitsas K Kokkinakis M

Aims

Reimers migration percentage (MP) is a key measure to inform decision-making around the management of hip displacement in cerebral palsy (CP). The aim of this study is to assess validity and inter- and intra-rater reliability of a novel method of measuring MP using a smart phone app (HipScreen (HS) app).

Methods

A total of 20 pelvis radiographs (40 hips) were used to measure MP by using the HS app. Measurements were performed by five different members of the multidisciplinary team, with varying levels of expertise in MP measurement. The same measurements were repeated two weeks later. A senior orthopaedic surgeon measured the MP on picture archiving and communication system (PACS) as the gold standard and repeated the measurements using HS app. Pearson’s correlation coefficient (r) was used to compare PACS measurements and all HS app measurements and assess validity. Intraclass correlation coefficient (ICC) was used to assess intra- and inter-rater reliability.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 907 - 912
23 Nov 2022
Hurley RJ McCabe FJ Turley L Maguire D Lucey J Hurson CJ

Aims

The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery.

Methods

Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 859 - 866
4 Nov 2022
Diesel CV Guimarães MR Menegotto SM Pereira AH Pereira AA Bertolucci LH Freitas EC Galia CR

Aims

Our objective was describing an algorithm to identify and prevent vascular injury in patients with intrapelvic components.

Methods

Patients were defined as at risk to vascular injuries when components or cement migrated 5 mm or more beyond the ilioischial line in any of the pelvic incidences (anteroposterior and Judet view). In those patients, a serial investigation was initiated by a CT angiography, followed by a vascular surgeon evaluation. The investigation proceeded if necessary. The main goal was to assure a safe tissue plane between the hardware and the vessels.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 713 - 719
19 Sep 2023
Gregersen MG Justad-Berg RT Gill NEQ Saatvedt O Aas LK Molund M

Aims

Treatment of Weber B ankle fractures that are stable on weightbearing radiographs but unstable on concomitant stress tests (classified SER4a) is controversial. Recent studies indicate that these fractures should be treated nonoperatively, but no studies have compared alternative nonoperative options. This study aims to evaluate patient-reported outcomes and the safety of fracture treatment using functional orthosis versus cast immobilization.

Methods

A total of 110 patients with Weber B/SER4a ankle fractures will be randomized (1:1 ratio) to receive six weeks of functional orthosis treatment or cast immobilization with a two-year follow-up. The primary outcome is patient-reported ankle function and symptoms measured by the Manchester-Oxford Foot and Ankle Questionnaire (MOxFQ); secondary outcomes include Olerud-Molander Ankle Score, radiological evaluation of ankle congruence in weightbearing and gravity stress tests, and rates of treatment-related adverse events. The Regional Committee for Medical and Health Research (approval number 277693) has granted ethical approval, and the study is funded by South-Eastern Norway Regional Health Authority (grant number 2023014).


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims

To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation.

Methods

Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 154 - 161
28 Mar 2023
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 850 - 858
2 Nov 2022
Khoriati A Fozo ZA Al-Hilfi L Tennent D

Aims

The management of mid-shaft clavicle fractures (MSCFs) has evolved over the last three decades. Controversy exists over which specific fracture patterns to treat and when. This review aims to synthesize the literature in order to formulate an appropriate management algorithm for these injuries in both adolescents and adults.

Methods

This is a systematic review of clinical studies comparing the outcomes of operative and nonoperative treatments for MSCFs in the past 15 years. The literature was searched using, PubMed, Google scholar, OVID Medline, and Embase. All databases were searched with identical search terms: mid-shaft clavicle fractures (± fixation) (± nonoperative).