Following ischaemia-reperfusion (I-R) tissues undergo a neutrophil mediated oxidant injury. Vitamin C is a water-soluble endogenous anti-oxidant, which has been shown in previous studies to abrogate neutrophil mediated endothelial injury. Our aim was to evaluate Vitamin C supplementation in the prevention of I-R induced acute
Matsen in 1975 described Compartment Syndrome (CS) as a condition in which the circulation and function of tissues within a closed space are compromised by increased pressure within that space. Raised intra-compartmental pressures result in progressive venous obstruction, capillary stagnation and microvascular hypoxia. N-acetyl cysteine (NAC) is an anti-oxidant used clinically to reduce liver injury following paracetamol overdose. NAC has been shown previously to reduce lung injury following exposure to endotoxin. Our aim was to evaluate the efficacy of n-acetyl cysteine in the prevention of CS induced acute
Aims. Ultrasound-guided injection techniques are expected to enhance therapeutic efficacy for skeletal muscle injuries and disorders, but basic knowledge is lacking. The purpose of this study was to examine the diagnostic accuracy of ultrasound for abnormal skeletal muscle lesions, and to examine the distribution patterns of solution and cells injected into abnormal muscle lesions under ultrasound guidance. Methods. A cardiotoxin (CTX)-induced
Purpose of the study: The purpose of this study was to assess traumatic damage to muscles using biological markers. Two approaches were evaluated: a modified Hardinge approach (anterior hemimyotomy) and a reduced anterolateral approach (Rottinger). Material and method: This was a multicentric prospective study conducted in three centres in 2008. The first 50 patients in each centre were included. Total creatinine phosphokinase (CPK) and serum myoglobulin levels were used to evaluate muscle damage. Blood samples were taken ten hours after surgery for myoglobulaeia and at one and two postoperative days for CPK. Student’s t test was used for the statistical analysis. Results: There was no statistically significant difference in serum myoglobulin levels 10 hours postoperatively (p=0.25) or for CPK level at day 1 (p=0.098) and day 2 (p=0.105). Objective clinical recovery (Postel-Merle-d’Aubigné, Harris) and function (WOMAC and SF-12) were better at six weeks with the reduced anterolateral approach. Discussion: These findings show that muscle aggression after mini-incision is to the same order as with the standard approach. The damage is however different: section for the Hardinge type approaches, stretching and contusion for the mini-incisions. Conclusion: Use of biological markers specific for muscle tissue appears to be a simple way of quantifying muscle damage. However, adjunction of an imaging technique (MRI) might provide a more precise assessment of
Elevated intracompartmental pressure (ICP) results in tissue damage due to impaired microcirculatory function. The nature of microcirculatory impairment in elevated ICP is not well understood. This study was designed to measure the effects of increased ICP on skeletal muscle microcirculation, inflammation and cell viability using intravital videomicroscopy. Twenty adult male Wistar rats were randomised to four groups: the control group (control) had no intervention; while three experimental groups had elevated ICP maintained for fifteen (15m), 45 (45m), or ninety (90m) minutes. Compartment pressure was continuously monitored and controlled between 30¡V40mmHg in the posterior hindlimb using saline infusion into the anterior hindlimb. Mean arterial pressure was maintained between 80 and 120mmHg. Fasciotomy was then performed and the Extensor Digitorum Longus muscle studied using intravital videomicroscopy. Perfusion was measured by comparing the numbers of continuous, intermittent, and nonperfused capillaries. Inflammation was measured by counting the number of activated (rolling and adherent) leukocytes in post-capillary venules.
Aims. The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. Methods. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 10. 6. PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%. Conclusion. The HIPGEN study assesses the efficacy, safety, and tolerability of intramuscular PLX-PAD administration for the treatment of
Aims. Dystrophic calcification (DC) is the abnormal appearance of calcified deposits in degenerating tissue, often associated with injury. Extensive DC can lead to heterotopic ossification (HO), a pathological condition of ectopic bone formation. The highest rate of HO was found in combat-related blast injuries, a polytrauma condition with severe
The HIPGEN study funded under EU Horizon 2020 (Grant 7792939) has the aim to investigate the potential of the first regenerative cell therapy for the improvement of recovery after
Traditional mechanical debridement can only remove visibly infected tissue and is unable to completely clear all the biofilm that hides within muscle crevices and nerves. This study aims to determine the results of single-stage revision using noncontact low frequency ultrasonic debridement in treating chronic periprosthetic joint infections (PJI). A prospective study of consecutive patients requiring single-stage revision for chronic PJI was performed since August 2021. After mechanical debridement, an 8‑mm handheld non‑contact low‑frequency ultrasound probe was used for ultrasonic debridement at a frequency of (25±5) kHz and power of 90% for 5 minutes. Each ultrasound lasted 10 seconds with 3‑seconds intervals. The probe was repeatedly sonicated among all soft tissue and bsingle interface. The distal femoral canal and the posterior capsule of the knee were fully sonicated with a special right‑angle probe. Chemical debridement was then performed to irrigation the whole operative area. Recurrence of infection, culture results and number of colonies 24 hours after ultrasonic debridement were recorded. A total of 45 patients (25 hips and 20 knees) were included and 43 of them (95.6%) were free of infection at a mean follow-up time of 29 months (24 to 33). There were no intraoperative complications related to ultrasonic debridement (neurovascular and
Purpose: Several variables related to tourniquet (TQ) inflation contribute to ischemic
Summary Statement. This experimental study showed that platelet rich fibrin matrix can improve muscle regeneration and long-term vascularization without local adverse effects. Introduction. Even though
A randomised controlled pre-clinical trial utilising an existing extremity war wound model compared the efficacy of saline soaked gauze to commercial dressings. The Flexor Carpi Ulnaris of anaesthetised New Zealand rabbits was exposed to high-energy trauma using computer-controlled jig and inoculated with 10. 6. Staphylococcus aureus 3 hours prior to application of dressing. After 7 days the animals were culled. Quantitative microbiological assessment of post-mortem specimens demonstrated statistically significantly reduced S aureus counts in groups treated with iodine or silver based dressings (2-way ANOVA p< 0.05). Clinical observations and haematology were performed during the study. Histopathological assessment of post-mortem muscle specimens included image analysis of digitally scanned haematoxylin and eosin stained tissue sections and subjective semi-quantitative assessment of pathology severity using light microscopy to grade
Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability. A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia.Aims
Methods
Purpose: It is well established that skeletal muscle ischemia followed by reperfusion induces oxidative damage, metabolic stress, and an inflammatory response. This ischemia-reperfusion injury has been studied extensively in experimental models and, importantly, in the clinical setting where it is associated with tourniquet (TQ) inflation during orthopedic trauma surgery. Of particular clinical concern is the notion that reperfusion upon TQ release is central to oxidative injury, since release necessarily follows surgery. Consequently, the effects of ischemia alone, without reperfusion, is poorly documented. That is, it remains unknown what are the effects of muscle ischemia, per se, on muscle properties that could influence functional recovery postoperatively or what preventative measures might be taken to minimize the potentially deleterious effects of the ischemic period alone. Hence the purpose of this study was to investigate changes in myofibrillar contractile protein oxidation over the course of TQ-induced leg muscle ischemia during orthopedic trauma surgery. Method: Among patients with unilateral ankle fractures requiring surgery at our institution, 24 subjects gave informed consent to participate. All subjects underwent standard general anesthesia. PRE surgical biopsies were collected from the peroneus tertius muscle (PT) immediately after TQ inflation and incision of the skin and underlying connective tissue. POST surgical biopsies were collected from the same muscle immediately before TQ release. Oxidation of PT myosin, actin, and total protein was quantified using Western blot analysis for 4-hydroxynonenal (4-HNE) modified proteins. Results are reported as mean ± standard deviation. Results: Total TQ time ranged from about 21 to 84 min (50.5±16). As anticipated, in PRE biopsies compared to POST biopsies there were large increases in the PT content of 4-NE modified myosin (174.4±128%; P<
1×10-6), actin (223.7±182%; P<
5×10-9), and total protein (567.5±378%; P<
5×10-7). Intriguingly, there was a much greater increase in PT protein oxidation in males than in females (43.3% difference; P<
0.05), although there was no relationship observed between PT protein oxidation and subject age. Surprisingly, there was no significant relationship between muscle protein oxidation and duration of the TQ-induced ischemia. Conclusion: TQ-induced skeletal muscle ischemia for 21 to 84 min during orthopedic trauma surgery leads to considerable oxidative
Background: Scientific investigation of muscle trauma and regeneration is in need of well standardised models. These should mimic the clinical situation and be thoroughly described histologically and functionally. Existing models of blunt
Introduction: The complexity of the spine has made a complete understanding of its mechanical function difficult. As a consequence, biomechanical models have been used to describe the behaviour of the spine and its various components. A comprehensive mathematical model of the muscles of the lumbar spine and trunk is presented to enable computation of the forces and moments experienced by the lumbar intervertebral joints during physiological activities. Methods: The model includes the nine major muscles crossing the region and concentrates on improving the estimated line of action for the muscles. The muscles are considered to consist of numerous fascicles, each with its own force producing potential based on size and line of action. The model respects the physical constraints imposed by the skeletal structure by ensuring that muscles maintain their anatomical position in various spinal postures. Validation was performed by comparing model predictions of maximum moments to published data from maximum isometric exertions in male volunteers. To highlight the potential novel uses of the model, three examples of
INTRODUCTION: The complexity of the spine has made a complete understanding of its mechanical function difficult. As a consequence, biomechanical models have been used to describe the behaviour of the spine and its various components. A comprehensive mathematical model of the muscles of the lumbar spine and trunk is presented to enable computation of the forces and moments experienced by the lumbar intervertebral joints during physiological activities. METHODS: The model includes the nine major muscles crossing the region and concentrates on improving the estimated line of action for the muscles. The muscles are considered to consist of numerous fascicles, each with its own force producing potential based on size and line of action. The model respects the physical constraints imposed by the skeletal structure by ensuring that muscles maintain their anatomical position in various spinal postures. Validation was performed by comparing model predictions of maximum moments to published data from maximum isometric exertions in male volunteers. To highlight the potential novel uses of the model, three examples of
The June 2012 Research Roundup. 360. looks at: platelet-rich plasma; ageing, bone and mesenchymal stem cells; cytokines and the herniated intervertebral disc; ulcerative colitis, Crohn’s disease and anti-inflammatories; the effect of NSAIDs on bone healing; osteoporosis of the fractured hip; herbal medicine and recovery after acute
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods