Summary Statement. Paraspinal muscle contain higher proportion of slow-twich fibers. The fixation of the rat tail induced transition of
Aims: The purpose of this study is to determine
Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to
The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics.Aims
Methods
Introduction and Aims: With a great progress in bone regeneration, muscle is currently regarded as a largest limiting factor for successful limb lengthening leading to joint contractures and fractures of distraction regenerate. The purpose of this study was to evaluate muscle architectural changes and potential mechanisms of joint contractures during limb lengthening. Method: Nine mature goats underwent 20% unilateral tibial lengthening (0.25 mm x 3/day) and were sacrificed immediately upon completion of distraction. With the stifle (knee) and hock (ankle) joints fixed at similar angles, both limbs were disarticulated at the hip joint and submerged into 10% buffered formalin. Following tissue fixation, all tibial muscles were sequentially dissected and changes in muscle origin-to-incretion length, belly length, tendon length, myofibers length, and sarcomere length were analysed relative to the muscle measurements on the contralateral limb and bone lengthening.
Achilles tendinitis can result, through inflammatory procedures, to tendon degeneration with microtears and nodules. Current conservative or surgical treatment of this lesion proved to be not effective enough. The reason for this is the absence of sufficient oxygenation in the area. In this study we report the results of a novel technique which tries to improve local vascularity. We operated on 15 mature rabbits after they were anasthetized. Soleus fibers were trasplanted in the right achilles tendon. A lesion, 10mm long and 2mm wide was created in the inner band of the tendon simulating tendinitis. In the left achilles tendon the same procedure was done without transplantation. The rabbits were divided in three equal groups and were sacrificed in the first week, the 2nd and 3rd month after the operation. Histopathologic examination was done in both achilles tendons. The following parameters were assessed: transplanted muscle viability, inflammation and neoangiogenesis. We also evaluated the contact between muscle and tendon and the quality of tissue that was formed in the tendinitis simulating area. Inflammatory process was noticed only in the 1st week after surgery. In the other groups viable
Disuse atrophy is the basis for profound physiological changes of the muscles of immobilised limbs. The aim of this study was to use ultrasound to assess the quadriceps musculature and to try and measure atrophy. We monitored the effects of enforced reduction of mobility due to trauma on the intramuscular architecture of the quadriceps using high resolution real-time ultrasonography (HRRTU) in 13 skeletally mature male patients (43.2 years, range 16 to 82 years), with an isolated unilateral diaphyseal fracture of the femur or of the tibia. All patients had undergone interlocked intramedullary nailing (IIN). Using HRRTU, the pennation angles and
Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured
Purpose of the study: The aim of this biomechanical study was to assess the performance of the deltoid muscle in the absence of a rotator cuff using different models for shoulder prosthesis. Material and methods: A computer model reproducing the three dimensions of the glenohumeral joint was use to analyze the force of the deltoid muscle during abduction movements in shoulders devoid of a rotator cuff. The three heads of the deltoid were analyzed in order to determine the most effective level of muscle tension. The lever arm of the deltoid was measured from 0–90° abduction. Using this 3D model, we simulated implantation of six different models of reversed prostheses in order to assess the biomechanical situation which would be the most favorable for the deltoid. Performance of the normal deltoid was compared with the performance of the deltoid after implantation of an anatomic prosthesis and after implantation of an reversed prosthesis. Several variables were studied: medial offset of the center of rotation, lateral offset of the humerus, lengthening of the deltoid muscle. Results: Optimal deltoid performance (especially from 60–90° abduction) was observed if the center of rotation was offset medially and the humerus was offset laterally and lowered. A 10% increase in the length of the
Introduction. Recovery of muscle strength following Total Knee Replacement (TKR) is variable, and can affect the resultant function of the patient. Satellite cells are undifferentiated myogenic precursors considered to be muscle stem cells that lie quiescently around the
INTRODUCTION: Chronic experimental rotator cuff tears are associated with muscle retraction, atrophy, fatty infiltration, a pronounced change in the pennation angle of the muscle and consequent shortening of
Previous studies in animal models of limb lengthening have shown a wide spectrum of histopathological changes during distraction phase. Much less is known about the structural response of muscle during the consolidation phase. This study aimed to observe and score changes in morphology, weight, length and maximal perimeter of gastrocnemius during the distraction and consolidation phases. Thirty two immature New Zealand white rabbits were divided into two equal groups: lengthening and sham. In each group, half of the rabbits were killed at the end of lengthening and half 5 weeks later. A bilateral external fixator was applied to tibia and a mid-diaphysis osteotomy performed. The lengthening rate was 0.4 mm twice daily with an initial delay of 7 days. 30% lengthening was achieved in 4 to 5 weeks. After sacrifice, the whole gastrocnemius was taken from its attachments. Its weight, length and maximal perimeter were measured. At the middle of belly, a specimen 0.5cm in length was taken from the medial gastrocnemius for H&
E and Masson trichrome staining. A scoring system was used to achieve a semi-quantitative analysis of the histopathological changes in gastrocnemius. No abnormal changes were observed in the sham side. Degeneration, atrophy and endomysial fibrosis were all found in the lengthened side. The scores of histopathological changes between the end of lengthening and 5 weeks later showed a decreasing trend, but no significant difference. The weight and perimeter decreased and length increased in the lengthening side. The weight, perimeter and length of gastrocnemius in both lengthening and control sides increased at 5 weeks after the end of lengthening. Muscular atrophy, as shown by a decrease in weight, perimeter and
Pulsed Electromagnetic Fields (PEMFs) promote joint tissue anabolic activities, particularly in cartilage and bone. Here we investigated the effect of selected PEMFs (75Hz, 1.5mT, 1.3msec) in a differentiating model of murine myoblasts (C2C12) in vitro. C2C12 were seeded at 5×10. 3. cells/cm. 2. in 4 well plates and left to adhere for 24h. Subsequently, cells were either maintained in growth medium (GM) or induced towards myogenic differentiation in low-serum conditions, with and without PEMF exposure, for 4 days. Morphological analysis, myotube formation and fusion index (FI) were assessed with fluorescence microscopy techniques. Metabolic activity was determined by MTT; moreover, a multiplex cytokine array (RayBiotech) allowed cell supernatant molecule quantification. Cells exposed to PEMFs in GM acquired a distinctive elongated morphology, with increased bi-nuclear figures (3.2-fold FI increase over PEMF-unexposed cells) and displayed a significantly higher metabolic activity (+31%, p<0.05 over PEMF-unexposed cells). PEMF exposure increased metabolic activity also under myogenic differentiation (+15% over PEMF-unexposed differentiating cells, p<0.05), with the formation of long, thick polynuclear myotubes, suggesting a role of PEMFs in enhancing myogenesis (7.7-fold FI increase over PEMF-unexposed cells). 4-day culture supernatants revealed the presence of several myokines (KC/CXCL1, LIX, MCP-1, TIMP-1). Preliminary analysis showed a 1.16-fold increase (n=2) of LIX and, notably, a 1.91-fold increase (n=2) of TNF-RI, in cell supernatants of PEMF-exposed over PEMF-unexposed cells. Collectively, these results suggest that PEMF may successfully be applied in models of muscle cell trauma to optimise
Avulsion of the abductor muscles of the hip may cause severe limp and pain. Limited literature is available on treatment approaches for this problem, and each has shortcomings. This study describes a muscle transfer technique to treat complete irreparable avulsion of the hip abductor muscles and tendons. Ten adult cadaver specimens were dissected to determine nerve and blood supply point of entry in the gluteus maximus and tensor fascia lata (TFL) and evaluate the feasibility and safety of transferring these muscles to substitute for the gluteus medius and minimus. In this technique, the anterior portion of the gluteus maximus and the entire TFL are mobilised and transferred to the greater trochanter such that the
Purposes of the study and background. Characteristics of muscle activity, represented by surface electromyography (EMG), have shown differences between patients with low back pain and healthy adults; how they relate to functional/clinical scales remains unclear. The purpose of the current study was to examine the correlation between frequency characteristics of EMG and patients' self-rated score of disability using continuous wavelet transform (CWT) analysis. Methods and Results. Fifteen patients with chronic mechanical low back pain (LBP) and 10 healthy adults were recruited. Patients completed the Roland-Morris Disability Questionnaire (RMDQ) and bilateral EMG activity was obtained from erector spinae at vertebral level L4 and T12. Subjects performed 3 brief maximal voluntary contractions (MVCs) of the back extensors and the torque was measured using a dynamometer. CWT was applied to the EMG signals of each muscle in a 200ms window centred around the peak torque obtained during the MVCs. The ratio (low/high frequencies) of the energy, the peak energy, and the frequency of the peak energy were calculated for each muscle and then averaged and correlated with the individual's RMDQ score. Patients had significantly lower peak power than the controls (p=0.04). Additionally, RMDQ positively correlated to the average ratio of energy (rho=0.71; p=0.01), meaning higher disability corresponded to a dominant distribution of energy in the lower-frequencies; but negatively correlated to the average frequency of peak energy (rho=-0.61; p=0.035), meaning lower frequency of peak energy corresponded to higher levels of disability. Conclusion. The current findings support anatomical evidence of changes in
Introduction. The exact mechanisms leading to tendinopathies and tendon ruptures remain poorly understood while their occurrence is clearly associated with exercise. Overloading is thought to be a major factor contributing to the development of tendon pathologies. However, as animal studies have shown, heavy loading alone won't cause tendinopathies. It has been speculated, that malfunctioning adaptation or healing processes might be involved, triggering tendon tissue degeneration. By analysing the expression of the entirety of degrading enzymes (degradome) in pathological and non-pathological, strained and non-strained tendon tissue, the aim of this study was to identify common or opposite patterns in gene regulation. This approach may generate new targets for future studies. Materials and Methods. RNA was extracted from different tendon tissues: normal (n=7), tendinopathic (n=4) and ruptured (n=4) Achilles tendon; normal (n=4) and tendinopathic (n=4) posterior tibialis tendon; normal hamstrings tendon with or without subjection to static strain (n=4). The RNA was reverse transcribed, then pooled per group The expression of 538 protease genes was analysed using Taqman low-density array quantitative RT-PCR. To be considered relevant, changes had to be at least 4fold and measurable at a level below 36 Cts. Results. In general, there was little common regulation when exercised was compared with pathological tissue. The expression of PAMR1 and TNFαIP3 was upregulated with exercise (169-fold and 78-fold), Achilles tendinopathy (9724-fold and 7-fold) and Achilles tendon rupture (1809-fold and 10-fold), while DDI1, PSMB11 and PSH2 which were down-regulated with exercise were upregulated with Achilles pathology. Discussion. The newly found targets may deliver insights into the initiation and progression of tendon pathologies: PAMR1, a regeneration associated muscle protease which has been shown to be downregulated in Duchenne muscular dystrophy and upregulated in regenerating
Introduction. Regular, repeated stretching increases joint range of movement (RoM), however the physiology underlying this is not well understood. The traditional view is that increased flexibility after stretching is due to an increase in muscle length or stiffness whereas recent research suggests that increased flexibility is due to modification of tolerance to stretching discomfort/pain. If the pain tolerance theory is correct the same degree of micro-damage to
Introduction &
aims: Quadriceps muscle wasting is common in patients with osteoarthritis (OA) of the hip and knee. Previous studies,using ultrasound and performing biopsies, have demonstrated quadriceps
Reverse total shoulder arthroplasty (RTSA) is increasingly used in the United States since approval by the FDA in 2003. RTSA relieves pain and restores mobility in arthritic rotator cuff deficient shoulders. Though many advantages of RTSA have been demonstrated, there still are a variety of complications (implant loosening, shoulder impingement, infection, frozen shoulder) making apparent much still is to be learned how RTSA modifies normal shoulder function. The goal of this study was to assess how RTSA affects deltoid muscle moment generating capacity post-surgery using a subject-specific computational model driven by in vivo kinematic data. A subject-specific 12 degree-of-freedom (DOF) musculoskeletal model was used to analyze the shoulders of 27 subjects (14-RTSA, 12-Normal). The model was modified from the work of Holzbaur et al. to directly input 6 DOF humerus and scapula kinematics obtained using fluoroscopy. Model geometry was scaled according to each subject's skeletal dimensions. In vivo abduction kinematics for each subject were input to their subject-specific model and muscle moment arms for the anterior, lateral and posterior aspects of the deltoid were measured over the arc of motion. Similar patterns of muscle moment arm changes were observed for normal and RTSA shoulders. The moment arm of the anterior deltoid was positive with the arm at the side and decreased monotonically, crossing zero (the point at which the