Advertisement for orthosearch.org.uk
Results 1 - 20 of 88
Results per page:
Bone & Joint Research
Vol. 11, Issue 9 | Pages 669 - 678
1 Sep 2022
Clement RGE Hall AC Wong SJ Howie SEM Simpson AHRW

Aims. Staphylococcus aureus is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type S. aureus 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of S. aureus Hla alone with those of the animal’s immune response to infection. Methods. Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 10. 7. colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling. Results. Chondrocyte death was greater with 8325-4 (96.2% (SD 5.5%); p < 0.001) than DU1090 (28.9% (SD 16.0%); p = 0.009) and both were higher than controls (3.8% (SD 1.2%)). Histology revealed cartilage/bone damage with 8325-4 or DU1090 compared to controls (p = 0.010). Both infected groups lost weight (p = 0.006 for both) and experienced limb swelling (p = 0.043 and p = 0.018, respectively). Joints inoculated with bacteria showed significant alterations in gait cycle with a decreased stance phase, increased swing phase, and a corresponding decrease in swing speed. Conclusion. Murine joints inoculated with Hla-producing 8325-4 experienced significantly more chondrocyte death than those with DU1090, which lack the toxin. This was despite similar immune responses, indicating that Hla was the major cause of chondrocyte death. Hla-deficient DU1090 also elevated chondrocyte death compared to controls, suggesting a smaller additional deleterious role of the immune system on cartilage. Cite this article: Bone Joint Res 2022;11(9):669–678


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2010
O’Loughlin P Cunningham M Tomin E Boatey J Lane J
Full Access

Introduction/Background: Significant limitations exist in the treatment of segmental defects or non-unions. Several investigators have developed methods in rats to synthesize ‘neo-bone’ within a mold for transfer and bone replacement in vivo. To better understand the critical biologic steps, it is desirable to use murine knockout models. Consequently, there is a need for a murine model of molded bone formation. Materials/Methods: Biocompatible silicone chambers were implanted over the distal portion of the inferior epigastric artery in each recipient mouse. Bone marrow was implanted into these chambers along with 10 microliters of BMP-7. At two weeks the animals were euthanized and the chambers explanted. Both faxitron and histological analysis was performed to characterize the contents of the chambers. Results: In this model, ossicle formation required the combination of viable donor marrow cells, an osteoinductive signal (BMP-7), and a patent vascular pedicle. Ossicle size and shape reflected the shape and dimensions of the interior of the chamber. De novo bone was produced in nine of nine chambers. Discussion: Currently no commercially available genetically labelled rat allows the tracking of specific cells in bone formation. Crucially, this study establishes the feasibility and reproducibility of the bone chamber model in a mouse. Conclusion: In this study we have established the vascularized neo-ossicle model in a murine model. This model may be used to track cell populations and develop a greater understanding of the critical biological steps in de novo bone formation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 285 - 285
1 Jul 2014
Ehrhart N Rose R Woodard M Parkinson L Chubb L
Full Access

Summary Statement. A single, locally-delivered injection of a human placental product containing multipotent stromal cells reduced severity of infection in an immunosuppressed murine osteomyelitis model and eliminated infection in 25% of animals compared with 0% of controls without the use of antibiotics. Introduction. Implant–associated osteomyelitis is a serious orthopaedic condition and is particularly difficult to treat in immunosuppressed individuals. Despite great advancement in the field of biomaterials and pharmaceuticals, emerging patterns of antibiotic resistance, complex biofilm production and penetration of therapeutic concentrations of effective antibiotics into bone continue to represent unmet clinical challenges. The promise of adult multipotent stromal cells (MSCs) for tissue regeneration has been of intense interest in recent years. Among their many potential therapeutic uses, MSCs have also been shown to have direct antimicrobial properties. The objective of this study was to evaluate the efficacy of a locally–delivered human placental-based tissue product containing multipotent stromal cells (hAmSC) to reduce the severity of implant-associated Staphylococcus aureus osteomyelitis in an immunosuppressed murine model. We hypothesised that athymic mice with implant-associated osteomyelitis would have diminished infection following treatment with hAmSC as evidenced by decreased bioluminescence intensity and lower histologic scores for infection and bacterial load when compared to saline-treated controls. Methods. An athymic murine model of chronic implant-associated osteomyelitis was developed using luciferase-transfected Staphylococcus aureus to study the antimicrobial effects of a human placental-based product containing multi-potent stromal cells (hAmSC). Sixteen athymic mice had osteomyelitis established in the right femoral diaphysis. Fifteen days after inducing luc S. aureus osteomyelitis, the mice were randomised to receive a single 0.5 cc injection of hAmSC (n=8) or vehicle (0.9% saline) (n=8) into the soft tissues immediately adjacent to the infected bone. No antibiotics were administered throughout the duration of the study. Mice were imaged with an In Vivo Imaging System (IVIS 1000, PerkinElmer) twice weekly for 30 days to assess change in bioluminescence intensity from baseline immediately prior to treatment with either hAmSC or saline. Radiographs were obtained at days −10, 0, 10, 20 and 30 days post-injection and scored for bone changes secondary to osteomyelitis by a reviewer blinded to treatment group. Mice were sacrificed 30 days after treatment and femurs were examined histologically and scored for bacterial load and degree of inflammation by a pathologist blinded to treatment group. Results. Osteomyelitis was successfully established in all mice as evidenced by baseline bioluminescence imaging and radiographs. Mean bioluminescence intensity decreased from baseline in animals receiving hAmSC and remained below baseline for 28 days, whereas vehicle-treated animals showed an increase in mean bioluminescence intensity throughout the study period. Osteomyelitis resolved in 2/8 hAmSC-treated animals and 0/8 vehicle-treated animals as evidenced by bioluminescence imaging and histological examination for bacteria/inflammation at sacrifice. Radiograph scores for secondary bone changes were lower in mice treated with hAmSC than vehicle at 10, 20 and 30 days post injection. Median inflammatory score was lower in the hAmSC-treated mice than vehicle treated controls. Conclusions. A single injection of hAmSC was effective at reducing the severity of S. aureus infection without the use of antibiotics in this chronic implant associated osteomyelitis immunosuppressed murine model. In addition to reduced bioluminescence intensity below baseline for 28 days during the study period, infection was eliminated in 25% of animals in the hAmSC-treated group


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 23 - 23
24 Nov 2023
Xie C Ren Y Weeks J Lekkala S Rainbolt J Xue T Shu Y Lee K de Mesy Bentley KL Yeh S Schwarz E
Full Access

Title. Longitudinal Intravital Imaging to Quantify the “Race for the Surface” Between Host Immune Cell and Bacteria for Orthopaedic Implants with S. aureus Colonization in a Murine Model. Aim. To assess S. aureus vs. host cell colonization of contaminated implants vis intravital multiphoton laser scanning microscopy (IV-MLSM) in a murine model. Method. All animal experiments were approved by IACUC. A flat stainless steel or titanium L-shaped pin was contaminated with 10. 5. CFU of a red fluorescent protein (RFP) expressing strain of USA300LAC, and surgically implanted through the femur of global GFP-transgenic mice. IV-MLSM was performed at 2, 4, and 6 hours post-op. Parallel cross-sectional CFU studies were performed to quantify the bacteria load on the implant at 2,4,6,12,18 and 24 hours. Results. 1) We developed a high-fidelity reproducible IV-MLSM system to quantify S. aureus and host cell colonization of a bone implant in the mouse femur. Proper placement of all implants were confirmed with in vivo X-rays, and ex vivo photos. We empirically derive the ROI during each imaging session by aggregating the imaged volume which ranges from (636.4um × 636.4um × 151um) = 0.625 +/- 0.014 mm. 3. of bone marrow in a global GFP-transgenic mouse. 2) IV-MLSM imaging acquisition of the “race for the surface”.In vitro MPLSM images of implants partially coated with USA300LAC (RFP-MRSA) were verified by SEM image. Results from IV-MLSM of RFP-MRSA and GFP. +. host cell colonization of the contaminated implants illustrated the mutually exclusive surface coating at 3hrs, which to our knowledge is the first demonstration of “the race for the surface” between bacteria and host cells via intravital microscopy. 3) Quantifying the “race for the surface” with CFU verification of S. aureus on the implant. 3D volumetric rendering of the GFP. +. voxels and RFP+ voxels within the ROI were generated in Imaris. The voxel numbers suggeste that the fight for the surface concludes ∼3hrs post-infection, and then transitions to an aggressive MRSA proliferation phase. The results of WT control demonstrate a significant increase in CFU by 12hrs post-op for both stainless steel (P<0.01) and titanium (P<0.01). Conclusions. We developed IV-MLSM to quantify the “Race for the Surface” between host cells and contaminating S. aureus in a murine femur implant model. This race is remarkably fast, as the implant surface is completely covered with 3hrs, peak bacterial growth on the implant occurs between 2 and 12 hours and is complete by 12hrs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 91 - 91
1 Apr 2018
Bundkirchen K Macke C Reifenrath J Angrisani N Schäck LM Noack S Welke B Krettek C Neunaber C
Full Access

Purpose. In patients with multiple trauma delayed fracture healing is often diagnosed, but the pathomechanisms are not well known yet. The purpose of the study is to evaluate the effect of a severe hemorrhagic shock on fracture healing in a murine model. Methods. 10 male C57BL/6N mice per group (Fx, TH, THFx, Sham) and point in time were used. The Fx-group received an osteotomy after implantation of a fixateur extern. The TH-group got a pressure controlled hemorrhagic shock with a mean arterial blood pressure of 35 mmHg over 90 minutes. Resuscitation with 4 times the shed blood volume of Ringer solution was performed. The THFx group got both. Sham-animals received the implantation of a catheter and a fixateur extern but no blood loss or osteotomy. After 1, 2, 3, 4 or 6 weeks the animals were sacrificed. For the biomechanics the bones were analyzed via X-ray, µCT and underwent a 3-point bending test. The nondecalcified histology based on slices of Technovit 9100. The signaling pathway was analyzed via RT. 2. Profiler™ PCR Array Mouse Osteoporosis, Western Blot and Quantikine ELISA for RankL and OPG. Statistical significance was set at p < 0.05. Comparisons between groups were performed using the Mann–Whitney U (Fx vs. THFx) or Kruskal-Wallis Test (other groups). Results. The experiment showed that after 1 week the bones of the Fx- and THFx-mice were macroscopically instable. After 2 weeks the Fx-group showed macroscopically a stable bridging whereas the bones of the THFx-group were partly not stable bridged. 3 weeks after surgery the bones of both groups were stable bridged. Analysis via µCT showed that trauma hemorrhage leads to decreased density of the bone and callus and also to increased share of callus per bone volume after 2 weeks. The 3-point-bending test showed that the maximum bending moment is decreased in the group THFx compared to Fx after 2 weeks. The studies of the histology showed after 2 weeks a decrease in bone and cartilage after trauma-hemorrhage by optical analysis of photographs of the slices. The analyses of the signaling pathway pointed to an involvement of the RankL/Opg and IL6 pathway. Conclusion. A hemorrhagic shock has a negative effect on fracture healing in terms of reduced density of the bone and callus, increased share of callus per bone volume, decreased maximum bending moment, reduced mineralization of the callus and leads to changes in the RankL/Opg and IL6 pathways


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 37 - 37
1 May 2012
Cullen E O'Flaharta C Murphy M Barry F Kerin M Curtin W
Full Access

Epidemiological studies have shown that accumulated mechanical stress is a risk factor for the development of osteoarthritis (OA). This debilitating progressive clinical condition affects a broad spectrum of patients and will ultimately lead to definitive arthroplasty surgery as the endpoint treatment option in many cases. The aim of this study is to establish a graded murine model of OA by medial meniscotibial destabilisation of the knee joint and in phase two, to investigate the migration and engraftment of radioisotope labeled mesenchymal stem cells (MSCs) at varying points of disease progression. The first phase of the study was to establish the murine model, an Irish first. All procedures were performed aseptically under general anaesthesia via a midline medial parapatellar approach on a murine fracture table. Microsurgical dissection was performed through necropsy analysed layers to the joint space and the meniscotibial ligament identified and transected. Validated histopathological analysis was performed at two, four, eight and twelve weeks postoperatively. The results showed a gradation of OA changes from mild unicondylar changes at two weeks, moderate unicompartmental change at four, severe unicompartmental change at eight and severe bicompartmental change at twelve weeks post-operatively. In vivo Bazooka-Single Photon Emission Computed Tomography (SPECT) (Phase 2) imaging studies are currently ongoing following the model establishment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 119 - 119
14 Nov 2024
Rösch G Rapp AE Tsai PL Kohler H Taheri S Schilling AF Zaucke F Slattery D Lanzl ZJ
Full Access

Introduction

Osteoarthritis (OA) is a chronic degenerative disease of the entire joint leading to joint stiffness and pain (PMID:33571663). Recent evidence suggests that the sympathetic nervous system (SNS) plays a role in the pathogenesis of OA (PMID:34864169). A typical cause for long-term hyperactivity of the SNS is chronic stress. To study the contribution of increased sympathetic activity, we analyzed the progression of OA in chronically stressed mice.

Method

We induced OA in male C57BL/6J mice by destabilizing the medial meniscus (DMM)(PMID:17470400) and exposed half of these mice to chronic unpredictable mild stress (CUMS)(PMID:28808696). Control groups consisted of sham-operated mice with and without CUMS exposure. After 12 weeks, CUMS efficacy was determined by assessing changes in body weight gain and activity of mice, measuring splenic norepinephrine and serum corticosterone levels. OA progression was studied by histological analysis of cartilage degeneration and synovitis, and by μCT to evaluate changes in calcified cartilage and subchondral bone microarchitecture. A dynamic weight-bearing system was used to assess OA-related pain.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 24 - 24
24 Nov 2023
Tvilum A Johansen MI Glud L Malskær D Khamas A Carmali S Mhatre S Søgaard A Faddy E de Vor L Rooijakkers S Østergaard L Meyer R Zelikin A Jørgensen N
Full Access

Aim

Infections represent a serious threat to the successful utilization of implants in modern medicine. Implant-associated infections are difficult to treat, because they involve biofilms that protect bacteria from the immune system and harbour antibiotic-tolerant persister cells.

In this work, we developed an antibody-drug conjugate (ADC) containing the anti-neoplastic drug mitomycin C (MMC) as a novel treatment paradigm for implant-associated infections. MMC was chosen as it is a potent antimicrobial against biofilms and its synthesis into an ADC was chosen to alleviate toxicity. Following development and synthesis of the ADC, stability and release of MMC was measured. We then used the ADC to kill bacteria in suspension and in biofilms, in vitro and in vivo.

Method

Mitomycin C was conjugated to a commercially available antibody against S. aureus via a disulfide linkage, with a drug release occurred via thiol-disulfide exchange.

ADC as tested against S. aureus under various growth conditions (planktonic, persisters and biofilm). In vitro toxicity of ADC vs MMC was measured using a human cell line (MOLT-4).

Finally, two independent in vivo experiments were performed in a murine implant-associated osteomyelitis model. In experiment one ADC treatment was compared NaCl, vancomycin and vancomycin + ADC (n=10 for all groups). Subsequently, ADC was compared to NaCl, the antibody used in the ADC construction, MMC and a novel ADC constructed with a non-S. aureus antibody (n=10 for all groups). All treatments were started day 7 post inoculation and were administered for 3 days. CFU enumeration was done following sonication to quantify bacterial load.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 31 - 31
4 Apr 2023
Seah M Birch M
Full Access

Osteochondral injuries are a recognised factor in the development of osteoarthritis (OA). Mesenchymal stromal cells (MSCs) represent a promising biological therapeutic option as an OA-modifying treatment, and they also secrete factors that may have an anti-catabolic effect and/or encourage endogenous repair. We aim to study the effects of (i) intra-articular injection of human bone-marrow-derived MSCs and (ii) their secretome on recovery in a murine knee osteochondral injury model.

The MSC secretome was generated by stimulating human bone-marrow-derived MSCs with tumour necrosis factor alpha (TNFα). Mice (n=48) were injected with i) MSC secretome, ii) MSCs or iii) cell culture medium (control). Pain was assessed by activity monitoring, and cartilage repair, subchondral bone volume and synovial inflammation were evaluated using histology and microCT.

Both MSC- and MSC-secretome-injected mice showed significant pain reduction at day 7 when compared to control mice, but only the MSC-injected mice maintained a significant improvement over the controls at day 28. Cartilage repair was significantly improved in MSC-injected mice. No significant effects were observed with regards to synovial inflammation or subchondral bone volume.

The MSC secretome demonstrates regenerative effects but this does not appear to be as sustained as a MSC cell therapy. Further studies are required to investigate if this can be overcome using different dosing regiments for injection of the MSC secretome. As we further understand the regenerative properties of the MSC secretome, we may be able to enhance the clinical translatability of these therapies. Direct intra-articular injection of MSCs for the treatment of OA also appears promising as a potential future strategy for OA management.

Acknowledgements: MS is supported by a grant from the Wellcome Trust (PhD Programme for Clinicians)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 77 - 77
1 Jan 2017
Veronesi F Giavaresi G Maglio M d'Abusco AS Politi L Scandurra R Borzì R Grigolo B Desando G Olivotto E Fini M
Full Access

Osteoarthritis (OA), the most common chronic degenerative joint disease, is characterized by inflammation, degradation of the articular cartilage and subchondral bone lesions, causing pain and decreased functionality.

NF-κB pathway is involved in OA and, in most cases, its activation depends on the phosphorylation and degradation of IκBα, the NF-κB endogenous inhibitor that sequesters NF-κB in the cytosol. Under inflammatory stimuli, IκBα is degraded by the IKK signalosome and NF-κB moves into the nucleus, inducing the transcription of inflammatory mediator genes and catabolic enzymes. The IKK signalosome includes IKKβ and IKKα kinases, the latter shown to be pivotal in the OA extracellular matrix derangement. The current OA therapies are not curative and nowadays, the preclinical research is evaluating new structure-modifying pharmacological treatments, able to prevent or delay cartilage degradation.

N-acetyl phenylalanine derivative (NAPA), is a derivative of glucosamine, a constituent of the glycosaminoglycans of cartilage and a chondroprotective agent. Previous in vitro studies showed the ability of NAPA to increase cartilage components and to reduce inflammatory cytokines, inhibiting IKKα kinase activity and its nuclear migration.

The present study aims to further clarify the effect of NAPA in counteracting OA progression, in an in vivo mouse model after destabilization of the medial meniscus (DMM).

Mice were divided into 3 groups:

DMM group: DMM surgery without NAPA;

DMM+NAPA group: DMM surgery with NAPA treatment;

NO DMM group: no DMM surgery.

DMM surgery was performed in the right knee, according to Glasson SS [2], while the left knee did not undergo any surgery. Four weeks after surgery (mild-to-moderate OA), some animals received one intra-articular injection of NAPA (2.5 mM) and after 2 weeks, the animals were pharmacologically euthanized. The mice of the 1st group were euthanized 4 weeks after DMM and those of the 3rd group after 6 weeks from their arrival in the animal facility. At the end of experimental times, both knee joints of the animals were analyzed through histology, histomorphometry, immunohistochemistry and subchondral bone microhardness.

The injection of NAPA significantly improved cartilage structure, increased cartilage thickness (p<0.0005), reduced Chambers and Mankin scores (p<0.005), fibrillation index (p<0.005) and decreased MMP13 (p<0.05) and ADAMTS5, MMP10, and IKKα (p<0.0005) staining. The microhardness measurements did not shown statistically significant differences between groups.

This study demonstrated the chondroprotective activities exerted by NAPA in vivo. NAPA markedly improved the physical structure of articular cartilage and reduced the amount of catabolic enzymes, and therefore of extracellular matrix remodeling. The reduction in OA grading and catabolic enzymes paralleled the reduction of IKKα expression. This further hints at a pivotal role of IKKα in OA development by regulating MMP activity through the control of procollagenase (MMP10) expression. We believe that the preliminary preclinical data, here presented, contribute to improve the knowledge on the development of disease modifying drugs since we showed the ability of NAPA of reverting the surgically induced OA in the widely accepted DMM model.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 128 - 128
1 Jul 2020
Teissier V Hamadouche M Bensidhoum M Petite H
Full Access

Polyethylene wear-debris induced inflammatory osteolysis is known as the main cause of aseptic loosening and long term revision total hip arthroplasty. Although recent reports suggest that antioxidant impregnated ultra-high molecular weight polyethylene (UHMWPE) wear-debris have reduce the osteolytic potential in vivo when compared to virgin UHMWPE, little is known about if and/or how PE rate of oxidation affects osteolysis in vivo. We hypothesized that oxidized UHMWPE particles would cause more inflammatory osteolysis in a murine calvarial bone model when compared to virgin UHMWPE.

Male C57BL/6 eight weeks old received equal amount of particulate debris overlaying the calvarium of (n=12/group): sham treatment (no particles), 2mg (6,75×107 particles/mg) of endotoxin-free UHMWPE particles (PE) or of endotoxin-free highly oxidized-UHMWPE (OX) particles. In vivo osteolysis was assessed using high resolution micro-CT and inflammation with L-012 probe dependent luminescence. At day 10, calvarial bone was examined using high resolution micro-CT, histomorphometric, immunohistochemistry analyses and qRT-PCR to assess OPG, RANK, RANK-L, IL-10, IL-4, IL-1b and TRAP genes expression using the protocol defined by individual TaqManTM Gene Expression Assays Protocol (Applied Biosystems).

In vivo inflammation was significantly higher in the OX (1.60E+06 ± 8.28E+05 photons/s/cm2) versus PE (8.48E+05 ± 3.67E+05) group (p=0.01). Although there was a statistically significant difference between sham (−0.27% ± 2.55%) and implanted (PE: −9.7% ± 1.97%, and OX: − 8.38% ± 1.98%) groups with regards to bone resorption (p=0.02), this difference was not significant between OX and PE (p = 0.14). There was no significant difference between groups regarding PCR analyses for OPG, RANK, RANK-L, IL-10, IL-4, IL-1b and TRAP (p = 0.6, 0.7, 0.1, 0.6, 0.3, 0.4, 0.7 respectively). Bone volume density was significantly decreased in PE (13.3%±1.2%) and OX (12.2%±1.2%) groups when compared to sham (15%±0.9%) (p < 0 .05). Histomorphometric analyses showed a significantly decreased Bone Thickness/Tissue Thickness ratio in the implanted group (0.41±0.01 mm and 0.43±0.01 mm) compared to sham group (0.69± 0.01) (p < 0 .001). However, there were no significant difference between OX and PE (p = 0.2).

Our findings suggest that oxidized UHMWPE particles display increased inflammatory potential. Results were not significant regarding in vivo or ex vivo osteolysis. As antioxidant-diffused UHMWPE induce less inflammation activity in vivo, the mechanism by which they cause reduced osteolysis requires further investigation.


Chondrocytes are essential to the maintenance of articular cartilage and it is thought that chondrocyte death occurs early in septic arthritis. Understanding the causes of chondrocyte death will allow the development of chondroprotective strategies to improve long-term outcomes following septic arthritis. We utilised a murine model of septic arthritis using intra-articular injection of 10µL of a 107 concentration of S. aureus suspended in PBS. Seventy-five adult male C57/Bl6 mice were randomised to receive injection of either S. aurues 8325-4 (a wild-type of S. aurues capable of alpha toxin production), DU1090 (an isogenic mutant of 8325-4 that is identical to 8325-4 other than being incapable of producing alpha toxin) or a PBS control. Establishment of septic arthritis was confirmed through gait changes (5 mice/group), limb swelling and histological changes (10 mice/group). 10 animals from each group were sacrificed at 48 hours and the injected knee joints were dissected before being stained with CFMDA (labelling live chondrocytes green) and PI (labelling dead chondrocytes red). The samples were imaged using a confocal laser scanning microscope and the percentage of chondrocyte death was calculated. Mice injected with S. aureus 8325-4 or DU1090 developed septic arthritis with evidence of weight loss, limb swelling and gait changes whereas these were absent in the control group. There was a significantly higher level of chondrocyte death in the group infected with 8325-4 (2.7% chondrocyte viability) when compared to DU1090 (73.9% chondrocyte viability) and PBS injected mice (95% chondrocyte viability). One-Way ANOVA revealed that the difference between each group was statistically different (p < 0.05). Alpha toxin is the major damaging toxin in S. aurues septic arthritis. Any adverse effect of the immune system is negligible in comparison. Development of treatments counteracting the effect of alpha toxin is required


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 41 - 41
1 Jul 2020
Monument M Singla A Affan A Jirik F Hildebrand K Kendal J
Full Access

Soft tissue sarcomas (STS) have not demonstrated favourable clinical responses to emerging immunotherapies such as checkpoint inhibitors. Studies in carcinomas and melanoma have demonstrated that tumours lacking T-cell infiltrates are associated with poor responses to immunotherapies. It is postulated that STS lack tumour asscoiated lymphocytes which renders these tumours insensitive to checkpoint inhibitors. Our objective was to develop a novel syngeneic mouse model of STS and characterize the immune phenotype of these tumours. Additionally, we sought to evaluate the therapeutic responses of these sarcomas to checkpoint inhibitors and a Type I interferon agonist.

K-ras mutagenesis and p53 deletion was induced using a Lenti-Cre-recombinase injection into the hindlimb of 3 week old C57BL/6 mice. Tumours were harvested and characterized using standard histopathology techniques and whole trascriptome sequencing (RNAseq). Full body necrospy and histopathology was performed to identify metastases. Flow cytometry and immunohistochemistry was used to evaluate tumour immune phenotypes. Tumours were implanted into syngeneic C57BL/6 mice and the therapeutic responses to anti-CTLA4, anti-PD1 and DMXAA (Type I interferon agonist) were performed. Tumour responses were evaluated using bioluminescent imaging and caliper measurements.

Soft tissue sarcomas developed in mice within 2–3 months of Lenti-Cre injection with 90% penetrance. Histologic analyses of tumours was consistent with a high-grade myogenic sarcoma characterized by smooth muscle actin, Desmin and Myogenin D positive immunostaining. Using crossplatform normalization protocols, geneexpression signatures of the mouse tumours most closely correlated with human undifferentiated pleomorphic sarcoma (UPS). Collectively, gene expression signatures of this murine sarcoma correlated with all muscle-derived human sarcomas (ERMS, ARMS, Synovial sarcoma, UPS). No lung or other visceral metastases were observed in all mice who developed spontaneous tumours. Immune phenotyping demonstrated a paucity of tumour-infiltrating lymphocytes (TILs, (TAMs). 50% of identified TILs in these murine sarcomas expressed PD-1, yet tumours were not responsive to anti-PD1 therapy or anti-CTLA4 therapy. A single intra tumoural (i.t.) injection of the Type I interferon agonist, DMXAA resulted in 80–90% tumour necrosis 72 hrs post-injection, decreased tumour viability up to 2 weeks post-injection and a marked infiltration of CD8+ T-cells and anitgen presenting dendritic cells and macrophages. Additional longitudinal experiments demonstrate a sustained and progressive anti-tumour effect in 83% (5/6) mice up to 6weeks following a single i.t. injection of DMXAA. All control treated mice (6/6) reached humane endpoint within 14 days. At 3 months post-DMXAA treatment, 4/6 mice were free of disease. We re-injected UPS tumours into these mice and tumours did not grow, suggesting abscopal effects after DMXAA treatment of primary tumours.

We have characterized a new orthotopic and syngeneic mouse model of a myogenic soft tissue sarcoma. Like most human STS sub-types, these tumours have an immune inert tumour microenvironment and are not sensitive to checkpoint inhibitors. This model, syngeneic to C56BL/6 mice will enable future opportunities to investigate how various branches of the immune system can be targetted or manipulated to unearth new immunotherapeutic strategies for sarcoma. Using this model we have demonstrated that a single, intra-tumoural injection of a Type I interferon agonist can result in anti-tumour effects, recruit cytotoxic lymphocytes and antigen presenting cells with into the the tumour microenvironment. Abscopal tumour rejection after DMXAA treatement suggest adaptive T-cell responses against UPS are active in this model. Future work is needed to determine if upregulation of Type I inferferon pathways can be used as a therapeutic strategy for sarcoma or as a sensitization strategy for checkpoint inhibitors.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 201 - 201
1 May 2012
Steck R Gregory L Schuetz M Wullschleger M Minehara H
Full Access

To elucidate the molecular biology of fracture healing, murine models are preferred. We performed a study with the first internal fixation system that allows studying murine fracture healing in a controlled mechanical environment, to characterise the timing of the fracture healing cascade with this model, based on a histological evaluation. Femoral osteotomies were performed in 68 male C57BL/six mice and stabilised with locking internal fixation plates in either stiff, or defined, flexible configurations. Healing progression was studied at 10 time points between 3 and 42 days post- surgery. After surgery, mice were radiographed to confirm the correct implant positioning. After sacrifice, the extracted femora were processed for decalcified histology. Thin sections were taken as serial transverse sections and stained for subsequent histomorphometric analysis and three-dimensional reconstruction of the different fracture callus tissues. The surgery was successful in 62 animals. Only six6 (8.8%) animals had to be sacrificed due to complications during surgery. The post-operative radiographs demonstrated a high reproducibility of implant positioning and no implant failure or screw loosening occurred during the experimental period. The improved consistency in surgical technique leading to more uniform results represents a key advantage of this system over other mouse fracture healing models. As such, it may allow a reduction in the sample size needed in future murine fracture healing studies. The histological evaluation confirmed the lack of a periosteal callus, and exclusively endosteal, intramembraneous bone formation in the bones stabilised with the stiff implants. The bones that were stabilised with the more flexible internal fixation plates showed additional endochondral ossification with extensive, highly asymmetrical, periosteal callus formation. Our results demonstrate that this murine fracture model leads to different healing patterns depending on the flexibility of the chosen plate system. This allows researchers to investigate the molecular biology of fracture healing in different ossification modes by selection of the appropriate fixation


Bone & Joint Research
Vol. 12, Issue 3 | Pages 212 - 218
9 Mar 2023
Buchalter DB Kirby DJ Anil U Konda SR Leucht P

Aims

Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability.

Methods

A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 244 - 244
1 Mar 2013
Lovric V Heuberer P Goldberg M Stone D Page R Oliver R Yu Y Walsh W
Full Access

Introduction. Post-arthroscopic glenohumeral chondrolysis (PAGCL) is a rare, but significant, complication of arthroscopic shoulder surgery that may lead to arthroplasty. Exact causal factors and pathways associated with the development of PAGCL are unknown however a number of patient factors and surgical factors have been implicated. Suture is one of these potential causal factors and currently little is known about the body's immune response to commonly used orthopaedic sutures. The aim of this project is to examine the biological response to 3 commonly used orthopaedic sutures (Ethibond, Fibrewire, and Orthocord) in a murine airpouch model. It was hypothesised that different sutures would elicit a different histological response and that suture wear-debris would induce an increased inflammatory reaction compared to intact suture. Methods. Total of 50 male Wister rats (12 weeks old) were used in this study. 5 rats were used per time point per group. Rat air-pouch was created according to a protocol previously described by Sedgewick et al. (1983). Once the pouch was established, on day 6, an incision was made and one of the test materials (intact Ethibond, intact Orthocord, intact Fibrewire, Fibrewire wear-debris) administered. Following wound closure, 5 ml of sterile PBS was injected to suspend the implanted materials. Negative control animals were injected with PBS alone. Rats were sacrificed at 1 and 4 weeks following surgery. The entire pouch was harvested and processed for H&E histology. The images of histological stained sections were digitally photographed and evaluated for presence of synovium and inflammatory reaction. Foreign body giant cells were quantified by two independent, blinded observers. Results. All animals recovered well and no infection were seen in any specimen. Synovium environment was confirmed by the presence of synovium lining in the airpouch (Figure 1). Giant multinucleated cells were confirmed to populate the suture material in all treatment groups (Figure 2) at both time points but not in the control specimens. Cell count results are summarized in Figure 3. Briefly, no statistical difference was found in the number of cells counted between intact suture groups at either time point. The number of cells increased in all groups from 1 week to 4 weeks however the difference was not found to be statistically different. Significant difference was found between Fibrewire intact suture and Fibrewire suture wear debris at both 1 and 4 week time points (p = 0.032 and 0.047 respectively). Discussion. No differences were observed between the biological reactivity of commonly used orthopaedic sutures. When particles (suture wear-debris) were implanted they elicited a greater inflammatory response then intact suture alone. This was confirmed by increased number of foreign body cells quantified. Increased inflammatory response may lead to PGAL and ultimately arthroplasty


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 59 - 59
1 Oct 2019
Sosa B Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom MPG Yang X
Full Access

Introduction

PJI is a devastating complication following total joint arthroplasty. In this study, we explore the efficacy of a bacteriophage-derived lysin, PlySs2, against in-vitro biofilm on titanium implant surfaces and in an acute in-vivo murine debridement antibiotic implant retention (DAIR) model of PJI.

Methods

In-vitro: Xen 36 S. aureus biofilm was grown on Ti-6Al-4V mouse tibial implants for 1 day or 5 days and subsequently exposed to growth media, 1000× minimal inhibitory concentration (MIC) Vancomycin, or 5× MIC PlySs2. Implants were sonicated and analyzed for Colony Forming Units (CFU).

In-vivo: A Ti-6Al-4V implant was inserted into the proximal tibia of C57BL/6J mice (n=21). All mice received 104 CFU inoculation of Xen 36 S. aureus to the knee joint capsule and the infection was permitted 5 days to progress. On day 5 the mice were separated into three groups (n=7/group): (1) no further surgical intervention (control group), (2) irrigation and debridement (I&D) with saline, (3) I&D with 2mg/mL PlySs2. No implant-exchange was performed to mimic a debridement, antibiotic, and implant retention (DAIR) therapeutic strategy. All mice were sacrificed at day 10.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 267 - 267
1 Sep 2005
Murnaghan M McIlmurray L Mushipe M Li G
Full Access

Introduction: The potential of Bone Morphogenic Protein (BMP) to improve fracture healing is of great interest to orthopaedic surgeons. Although the complex mechanisms leading from the presence of local BMP to the fracture scenario has yet to be elucidated. The purpose of this study was to investigate whether introducing rhBMP-2 to the fracture arena, some days after fixation could be more beneficial to fracture repair.

Methods: 40 animals were randomised into 4 groups; namely control treatment at day 0 or rhBMP-2 treatment at days 0, 4 or 8 post-surgery. All animals underwent a previously validated surgical procedure involving creation of an open femoral fracture fixed using a 4-pin external fixator. 30 μl of bovine serum albumin (BSA) alone (control) or mixed with 2.5 μg of rhBMP-2 (treatments) was injected via a lateral approach directly into the fracture gap, either following closure of the wounds (day 0) or at 4 or 8 days postoperatively. Animals were assessed as to the outcome of surgery by digital sequential x-ray at days 0, 8, 16 and 22 using a Faxitron MX-20 camera; and y either biomechanical testing under a 3-point bending technique (Lloyd Instruments Ltd, UK) or histological examination following sacrifice at day 22. Data were analysed using Mann-Whitney U and Wilcoxon Tests for statistical differences (SPSS, Version 9). Differences were considered significant when p< 0.05.

Results: X-ray analysis indicated that healing of fractures treated with rhBMP-2 at day 0 or day 4 was significantly greater than the two other groups at days 16 and 22. BMP given at day 4 tended to a greater effect than when given at day 0, though the range was too great to show a statistical difference. There were no differences between the BMP-8 and the BSA control groups. Mechanical testing showed that only animals that had received rhBMP-2 at day 4 had attained similar peak loads to failure to those of their contralateral unoperated leg. Bones from animals receiving rhBMP-2 at day 0 had attained the next greatest strength, which was followed by rhBMP-2 administration at day 8 animals, whereas the animals receiving BSA attaining the least strength. There was a statistical difference (p< 0.05) between both rhBMP-2 day 4 and day 0 groups compared to the BSA control group. Qualitative histology suggested that the rhBMP-2 day 0 and day 4 groups had almost fully healed with new bone whereas the BSA and rhBMP-2 day 8 groups still had considerable mounts of fibrous tissue and cartilage at the fracture gap 22 days following surgery.

Conclusions: The study demonstrates that a single percutaneous injection of rhBMP-2 has a positive effect on fracture healing, when prescribed at the time of injury or during the early period of fracture repair. Data suggests that the most effective timing of delivery of BMP may not be at the time of surgery but in the early healing phase. The day 4 time point in the mouse model is likely to equate to that of 7–10 days in larger animals or humans. Further investigation as to the most appropriate time for intervention using these proteins is warranted and may negate the current requirement for carried products and large doses of these expensive drugs.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 12
1 Mar 2002
Connolly C Dickson G Li G Marsh R
Full Access

NSAID’s cycle-oxygenase (COX) inhibitory characteristics are either non-specific, COX-1 preferential or recently COX-2 preferential. NSAID’s have been widely reported to delay fracture repair however the mechanism of this affect remains unclear.

Left femoral osteotomies were performed in 54 male 3 month old CFLP mice immobilised with uniplanar external fixators. 27 externally fixated mice received 4mg/kg meloxicam,b.d., from the day of surgery, by gavage. The control group received the carrier alone. 18 mice had external fixators applied to intact femurs and received no meloxicam as a sham control. Individual mouse movement, was quantified each day by autocounters using an infrared beam motion detection system. Plasma was obtained by right ventricular aspiration under anaesthesia on days 2,4,8 and 16-post surgery.

A validated bioassay and a slot blotting immunoassay were employed to determine the plasma concentration of 11-6 and relative TNF-α levels to normal mouse serum.

TNF-α levels peaked at day 4 and were suppressed by COX-2 inhibition. Both the control and treatment groups had higher levels of TNF-α than the non-fractured controls. The plasma concentration of 11-6 was elevated by COX-2 inhibition at all time points. The levels of TNF-α and 11-6 correlated in fracture control and treatment groups (Spearman’s 0.039 and 0.002 respectively). The 11-6 plasma concentration correlated to the animal motion in the treatment group alone (Spearman’s 0.017).

As it has been shown that TNF-α induces 11-6 production and that this inhibits TNF-α production a possible model for these interaction is shown below.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results. Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion. We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males. Cite this article: Bone Joint Res 2024;13(1):28–39