To investigate the significance of a cluster of cases of glenohumeral chondrolysis occuring following the intra-articular injection of
The removal of cement debris at the time of primary and revision joint replacement has been facilitated through the introduction of coloured bone cements. Up to date, few studies have evaluated the effect of methilene blue dye on physical, mechanical and pharmacological properties of cements. In this light, we evaluated the effects of adding
Introduction. The aim of this study was to investigate whether
Vertebral metastases are the most common type of malignant lesions of the spine. Although this tumour is still considered incurable and standard treatments are mainly palliative, the standard approach consists in surgical resection, which results in the formation of bone gaps. Hence, scaffolds, cements and/or implants are needed to fill the bone lacunae. Here, we propose a novel approach to address spinal metastases recurrence, based on the use of anti-tumour metallic-based nanostructured coatings. Moreover, for the first time, a gradient microfluidic approach is proposed for the screening of nanostructured coatings having anti-tumoral effect, to determine the optimal concentration of the metallic compound that permits selective toxicity towards tumoral cells. Coatings are based on Zinc as anti-tumour agent, which had been never explored before for treatment of bone metastases. The customized gradient generating microfluidic chip was designed by Autodesk Inventor and fabricated from a microstructured mould by using replica moulding technique. Microstructured mould were obtained by micro-milling technique. The chip is composed of a system of microfluidic channels generating a gradient of 6 concentrations of drug and a compartment with multiple arrays of cell culture chambers, one for each drug concentration. The device is suitable for dynamic cultures and in-chip biological assays. The formation of a gradient was validated using a
Abstract. The lateral ligaments of the ankle composed of the anterior talofibular (ATFL), calcaneofibular (CFL) and posterior talofibular ligaments (PTFL), are amongst the most commonly injured ligaments of the human body. Although treatment methods have been explored exhaustively, healing outcomes remain poor with high rates of re-injury, chronic ankle instability and pain persisting. The introduction and application of tissue engineering methods may target poor healing outcomes and eliminate long-term complications, improving the overall quality of life of affected individuals. For any surgical procedure or tissue-engineered replacement to be successful, a comprehensive understanding of the complete anatomy of the native structure is essential. Knowledge of the dimensions of ligament footprints is vitally important for surgeons as it guides the placement of bone tunnels during repair. It is also imperative in tissue-engineered design as the creation of a successful replacement relies on a thorough understanding of the native anatomy and microanatomical structure. Several studies explore techniques to describe ligament footprints around the body, with limited studies describing in-depth footprint dimensions of the ATFL, CFL and PTFL. Techniques currently used to measure ligament footprints are complex and require resources which may not be readily available, therefore a new methodology may prove beneficial. Objectives. This study explores the application of a novel technique to assess the footprint of ankle ligaments through a straightforward inking method. This method aims to enhance surgical technique and contribute to the development of a tissue-engineered analogue based on real anatomical morphometric data. Methods. Cadaveric dissection of the ATFL, CFL and PTFL was performed on 12 unpaired fresh frozen ankles adhering to regulations of the Human Tissue (Scotland) Act. The ankle complex with attaching ligaments was immersed in
Introduction. Human Mesenchymal stem cells (hMSCs) are a promising source for articular cartilage repair. Unfortunately, under in vitro conditions, chondrogenically differentiated hMSCs have the tendency to undergo hypertrophy similar to growth plate chondrocytes. Retinoic acid (RA) signalling plays a key role in growth plate hypertrophy. Whilst RA agonists block chondrogenesis and foster hypertrophy during later stages, RAR inverse agonists (IA) enhance chondrogenesis when applied early in culture. Therefore, we hypothesized that treatment with RAR IA will attenuate hypertrophy in chondrogenically differentiated hMSCs. To test this hypothesis, we analysed early (initial chondrogenic differentiation) and late treatment (hypertrophy stage) of hMSCs with an RAR IA. Methods. Pellets of passage 2 hMSCs were formed in V-bottom well plates by centrifugation and pre-differentiated in a chemically defined medium containing 10ng/mL TGFß (CM+) for 14 days. Thereafter, pellets were cultured for an additional 14 days under 6 conditions: CM+, CM- (w/out TGFß), and hypertrophic medium (CM- with 25 ng/ml BMP 4, w/out dexamethasone). Each of these first three conditions was additionally supplemented with the RA receptor (RAR) inverse agonist BMS493 (BMS) at 2μM after 14 days of chondrogenic pre-differentiation. One additional BMP4 group was supplemented with BMS from the beginning of chondrogenic differentiation until day 14. The pellets were assessed for gene expression (Col 2, Col 10, Col 1 and MMP13) and histologically using dimethyl
The trapeziometacarpal joint (TMJ) is the most commonly involved arthritic joint in the hand and is often injected in the outpatient setting. This study assesses the accuracy of TMJ injections. Six pairs of thawed, fresh-frozen cadaveric upper limbs were placed in the anatomic position. The limbs were randomized to be injected by one of two clinicians (a senior and a junior orthopaedic trainee). The TMJ of these specimens was palpated and injected with 0.5mls aqueous jelly dyed with
It is nowadays widely recognized that patient satisfaction following knee arthroplasty strongly depends on ligament balancing. To obtain this balancing, the occurring ligament strain is assumed to play a crucial role. To measure this strain, a method is described in this paper that allows full field 3D evaluation of the strains. The latter is preferred over traditional measurement techniques, e.g. displacement transducers or strain gauges, as human soft tissue is not expected to deform uniformly due to its highly inhomogeneous and anisotropic properties. To facilitate full field strain measurements, the 3D digital image correlation (DIC) technique was adopted. This technique was previously validated by our research group on human tissue. First, a high contrast speckle pattern was applied on the sMCL. Therefore, the specimens are first coated with a small layer of
Introduction: Acetabular osteolysis is common behind cups with holes (the reported incidence is 9% to 36%). Fluid pressure has been implicated in the pathogenesis of osteolysis. Aim: To test the hypothesis that a polyethylene liner in a metal cup can act as a pump in vivo. Methods: This study was performed during revision surgery in six cases. The components were from several manufacturers. All were ingrown uncemented cups that had osteolytic lesions associated with holes in the cup. A cannula was placed through the capsule into the hip joint and another was placed through the periosteum and bone of the ilium into the osteolytic lesion above the ingrown cup. The continuity of these two spaces through the holes in the cup was confirmed by the injection of
Purpose of the study: Surgical reconstruction procedures using the gracilus myocutaneous flap may be compromised if partial or total necrosis of the skin cover develops. The purpose of this study was to describe the anatomic blood supply to the gracilus muscle and the corresponding skin cover in an attempt to better understand the arterial afferences to the skin and define the safest topography for a transferable zone of skin. Material and methods: We dissected the thighs of human adult cadavers to detail the vascular bundles feeding the gracilus muscle. Selective injections of
INTRODUCTION. Appropriate, well characterized animal models remain essential for preclinical research. This study investigated a relevant animal model for cancellous bone defect healing. Three different defect diameters of fixed depth were compared in both skeletally immature and mature sheep. This ovine model allows for the placement of four confined cancellous defects per animal. METHODS. Defects were surgically created and placed in the cancellous bone of the medial distal femoral and proximal tibial epiphyses (See Figure 1). All defects were 25 mm deep, with defect diameters of 8, 11, and 14 mm selected for comparison. Defects sites were flushed with saline to remove any residual bone particulate. The skeletally immature and mature animals corresponded to 18 month old and 5 year old sheep respectively. Animals were euthanized at 4 weeks post-operatively to assess early healing. Harvested sites were graded radiographically. The percentage of new bone volume within the total defect volume (BV/TV) was quantified through histomorphometry and μ-CT bone morphometry. Separate regions of interest were constructed within the defect to assess differences in BV/TV between periosteal and deep bone healing. Defect sites were PMMA embedded, sectioned, and stained with basic fuschin and
Steroid injections are used for subacromial pain syndrome and can be administered via the anterolateral or posterior approach to the subacromial space. It is not currently known which approach is superior in terms of improving clinical symptoms and function. This is the protocol for a randomized controlled trial (RCT) to compare the clinical effectiveness of a steroid injection given via the anterolateral or the posterior approach to the subacromial space. The Subacromial Approach Injection Trial (SAInT) study is a single-centre, parallel, two-arm RCT. Participants will be allocated on a 1:1 basis to a subacromial steroid injection via either the anterolateral or the posterior approach to the subacromial space. Participants in both trial arms will then receive physiotherapy as standard of care for subacromial pain syndrome. The primary analysis will compare the change in Oxford Shoulder Score (OSS) at three months after injection. Secondary outcomes include the change in OSS at six and 12 months, as well as the Pain Numeric Rating Scale (0 = no pain, 10 = worst pain), Disabilities of Arm, Shoulder and Hand questionnaire (DASH), and 36-Item Short-Form Health Survey (SF-36) (RAND) at three months, six months, and one year after injection. Assessment of pain experienced during the injection will also be determined. A minimum of 86 patients will be recruited to obtain an 80% power to detect a minimally important difference of six points on the OSS change between the groups at three months after injection.Aims
Methods
Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 107 colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling.Aims
Methods
Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.Aims
Methods
Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold. Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.Aims
Methods
An experimental rabbit model was used to test the null hypothesis,
that there is no difference in new bone formation around uncoated
titanium discs compared with coated titanium discs when implanted
into the muscles of rabbits. A total of three titanium discs with different surface and coating
(1, porous coating; 2, porous coating + Bonemaster (Biomet); and
3, porous coating + plasma-sprayed hydroxyapatite) were implanted
in 12 female rabbits. Six animals were killed after six weeks and
the remaining six were killed after 12 weeks. The implants with
surrounding tissues were embedded in methyl methacrylate and grinded
sections were stained with Masson-Goldners trichrome and examined
by light microscopy of coded sections.Objectives
Methods
The April 2012 Wrist &
Hand Roundup360 looks at releasing the trigger finger, function in the osteoarthritic hand, complex regional pain syndrome, arthroscopic ligamentoplasty for the injured scapholunate ligament, self-concept and upper limb deformities in children, wrist arthroscopy in children, internal or external fixation for the fractured distal radius, nerve grafting, splinting the PIPJ contracture, and finding the stalk of a dorsal wrist ganglion