Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective. Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Materials and Methods. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking. Results. Initial axial stiffness and torsional stiffness in internal and external rotation for straight double plating (548.1 ± 134.2 N/mm, 2.69 ± 0.52 Nm/° and 2.69 ± 0.50 Nm/°) was significantly higher versus helical double plating (442.9 ± 133.7 N/mm, 2.07 ± 0.32 Nm/° and 2.16 ± 0.22 Nm/°), p≤0.04. Initial interfragmentary axial displacement and flexural rotation under 500 N static loading were significantly smaller for straight plating (0.11 ± 0.14 mm and 0.21 ± 0.10°) versus helical plating (0.31 ± 0.14 mm and 0.68 ± 0.16°), p<0.01. However, initial varus deformation under this loading remained not significantly different between the two fixation methods (straight: 0.57 ± 0.23°, helical: 0.75 ± 0.34°), p=0.08. During dynamic loading, within the course of the first 4000 cycles the movements of the distal fragment in flexion were significantly bigger for helical over straight plating (1.03 ± 0.33° versus 0.40 ± 0.20°), p<0.01. However, no significant differences were observed between the two fixation methods in terms of varus, internal rotation, axial and shear displacements at the fracture site, and number of cycles to failure. Conclusions. Augmented lateral plating of unstable distal femoral fractures with use of supplemental helically shaped medial plate was associated with more elastic bone-implant construct behavior under static and dynamic loading compared to straight double plating. Both fixation methods resulted in comparable number of cycles to failure. From a biomechanical perspective, the more elastic helical double plating may be considered as useful alternative to straight plating, potentially reducing stress risers at the distal bone-implant interface due to its ameliorated damping capacities


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 7 - 7
1 Apr 2012
Mullen M Pillai A Fogg Q Kumar CS
Full Access

The extended lateral approach offers a safe surgical approach in the fixation of calcaneal fractures. Lateral plating of the calcaneum could put structures on the medial side at risk. The aim was to identify structures at risk on the medial side of the calcaneum from wires, drills or screws passed from lateral to medial. Ten embalmed cadaveric feet were dissected. A standard extended lateral approach was performed. The DePuy perimeter plate was first applied and 2mm K-wires were drilled through each of the holes. The medial side was now examined to determine the structures at risk through each hole. The process was repeated with the Stryker plate. The calcaneum was divided into 6 zones, by two vertical lines, from the margins of the posterior facet and a transverse line along the axis of the bone through the highest point of the peroneal tubercle. The DePuy and the Stryker plates have 12 screw positions, 5 of which are common. With both systems, screw positions in zone 1 risk injury to the medial plantar nerve and zone 3 the lateral plantar nerve. A screw through zone 2 compromises the medial plantar in both. Screws through zone 4 risk the lateral plantar nerve with the DePuy plate. Screws through zone 5 of the DePuy plate risk the medial calcaneal nerve. Zone 5 of the Stryker plate and Zone 6 of both are safe. There is significant risk to medial structures from laterally placed wires, drills or screws. Subtalar screws have the highest risk and have to be carefully measured and placed. The Stryker plating system is relatively safer than the DePuy perimeter plate with three safe zones out of six


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 69 - 69
1 Nov 2021
Pastor T Zderic I Richards G Gueorguiev B Knobe M
Full Access

Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model. Materials and Methods. Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking. Results. Initial axial stiffness was significantly higher for helical (185.6±50.1 N/mm) versus straight (56.0±14.4) plating, p<0.01. However, initial torsional stiffness in internal and external rotation remained not significantly different between the two fixation techniques (helical plating:1.59±0.17 Nm/° and 1.52±0.13 Nm/°; straight plating: 1.50±0.12 Nm/° and 1.43±0.13Nm/°), p≥0.21. Helical plating was associated with significantly higher initial interfragmentary movements under 500 N static compression compared to straight plating in terms of flexion (2.76±1.02° versus 0.87±0.77°) and shear displacement under 6 Nm static rotation in internal (1.23±0.28° versus 0.40±0.42°) and external (1.21±0.40° versus 0.57±0.33°) rotation, p≤0.01. In addition, helical plating demonstrated significantly lower initial varus/valgus deformation than straight plating (4.08±1.49° versus 6.60±0.47°), p<0.01. Within the first 10000 cycles of dynamic loading, helical plating revealed significantly bigger flexural movements and significantly lower varus/valgus deformation versus straight plating, p=0.02. No significant differences were observed between the two fixation techniques in terms of axial and shear displacement, p≥0.76. Cycles to failure was significantly higher for helical plating (13752±1518) compared to straight plating (9727±836), p<0.01. Conclusions. Although helical plating using a pre-contoured LCP-DF was associated with higher shear and flexion movements, it demonstrated improved initial axial stability and resistance against varus/valgus deformation compared to straight lateral plating. Moreover, helical plate constructs demonstrated significantly improved endurance to failure, which may be attributed to the less progressively increasing lever bending moment arm inherent to this novel fixation technique. From a biomechanical perspective, helical plating may be considered as a valid alternative fixation technique to standard straight lateral plating of unstable distal femoral fractures


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 170 - 170
1 Jul 2014
Crisan D Stoia D Prejbeanu R Toth-Trascau M Vermesan D
Full Access

Summary Statement

Objectifying postoperative recovery of patients with comminuted tibial plateau fractures treated with a unilateral plate trough the use of a gait analysis system.

Introduction

Gait analysis has been a proved method for assessing postoperative results in patients with different orthopedic afflictions of the lower limb such as hallux valgus, ankle instabilities, knee osteoarthritis and arthroplasties but it has rarely been used for postoperative assessment of proximal tibial fractures. The more traditional means of quantifying postoperative articular step-off and limb axis deviations such as conventional X Rays and CT scanning and the clinician and patient completed scores that subjectively assess the outcome are complemented by the analysis of gait patterns set to objectify the most important patient related factor - the gait. As controversy exists in literature regarding the optimal treatment for severe tibial plateau fractures we proposed a gait study to evaluate locked angle unilateral plate osteosynthesis.

Patient & Method: A computerised motion analysis system and a sensor platform were used to gather gait data from 15 patients with unilateral tibial plateau fractures graded Shatzker V and VI treated with a angular stable locked lateral plate osteosynthesis. Gait analysis was performed postoperatively based on patient availability and as soon as ambulation was possible and permitted without auxiliary support (crutches) at 4 (mean of 4,6), 6 (mean of 6,2) and 12 (mean of 11,7) months respectively, at a naturally comfortable walking. All patients were evaluated using classic anteroposterior and lateral knee radiography and were asked to fill the KOOS score questionnaire at the time of the gait analysis session.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 275 - 276
1 May 2010
Ashraf M Davarinos N Ellanti P Thakral R Nicholson P Morris S Mc elwain J
Full Access

Introduction: Weber B fractures are one of the most common fractures of the ankle. Unstable fractures are treated with lateral plating and a lag screw. Another method of fixation is antiglide plating, this concept was first introduced by Brunner and Weber in 1982. Manoli and Schaeffer in 1987, showed that fixation by antiglide plate demonstrated superior static biomechanical properties compared to lateral plating. However there are some shortcomings in their study and hence we decided to perform our biomechanical study. The shortcomings of the Manoli study are. They did not use an interfragmentary lag screw for lateral plate fixation. It was a cadaveric study where the bone does not accurately represent the live bone. The quality of the bone ranging from normal to osteoporotic bone varies from cadaver to cadaver and hence there is no uniformity between the samples. Materials and Methods: We used 4th generation composite bone models validated to closely simulate human bone characteristics for fracture toughness, tensile strength, compressive strength, fatigue crack resistance and implant subsidence. 4th generation composite bone model provides uniformity of test samples which is not achievable in cadaveric studies. These bones were custom made for the experiment. We used two sets of bones, one representative of normal bone (Set A n=10) and the other of osteoporotic bone quality (Set B n=10). Each of the sets A & B will have two types of fixations for artificially created Weber B Fractures. Lateral plate with interfragmentary lag screw. Antiglide plate with interfragmentary lag screw. The strength of the fixation was measured by restressing the bone until the fixation failed using an Instron machine which simultaneously applied torque and compressive forces to the fibular construct. The resulting data was analysed on a computer and statistical analysis was performed. Results: When the two fixation constructs were stressed to failure, the lateral plate construct demonstrated less stiffness (3–5Nm/degree) and failed at lower energy levels (250Nm). Similar values obtained for the antiglide system were, stiffness of 12–16Nm/degree and energy absorbed to failure 350–450Nm. Antiglide plating was significantly more stable in the osteoporotic fibula. Conclusion: Antiglide plating with lag screw is much more stable than lateral plating. It is suitable for treatment without plaster cast post operatively. It results in a more stable fixation in osteoporotic bone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 11 - 11
17 Apr 2023
Inacio J Schwarzenberg P Yoon R Kantzos A Malige A Nwachuku C Dailey H
Full Access

The objective of this study was to use patient-specific finite element modeling to measure the 3D interfragmentary strain environment in clinically realistic fractures. The hypothesis was that in the early post-operative period, the tissues in and around the fracture gap can tolerate a state of strain in excess of 10%, the classical limit proposed in the Perren strain theory. Eight patients (6 males, 2 females; ages 22–95 years) with distal femur fractures (OTA/AO 33-A/B/C) treated in a Level I trauma center were retrospectively identified. All were treated with lateral bridge plating. Preoperative computed tomography scans and post-operative X-rays were used to create the reduced fracture models. Patient-specific materials properties and loading conditions (20%, 60%, and 100% body weight (BW)) were applied following our published method.[1]. Elements with von Mises strains >10% are shown in the 100% BW loading condition. For all three loading scenarios, as the bridge span increased, so did the maximum von Mises strain within the strain visualization region. The average gap closing (Perren) strain (mean ± SD) for all patient-specific models at each body weight (20%, 60%, and 100%) was 8.6% ± 3.9%, 25.8% ± 33.9%, and 39.3% ± 33.9%, while the corresponding max von Mises strains were 42.0% ± 29%, 110.7% ± 32.7%, and 168.4% ± 31.9%. Strains in and around the fracture gap stayed in the 2–10% range only for the lowest load application level (20% BW). Moderate loading of 60% BW and above caused gap strains that far exceeded the upper limit of the classical strain rule (<10% strain for bone healing). Since all of the included patients achieved successful unions, these findings suggest that healing of distal femur fractures may be robust to localized strains greater than 10%


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 43 - 43
1 Jul 2020
Rollick N Bear J Diamond O Helfet D Wellman D
Full Access

Dual plating of the medial and lateral distal femur has been proposed to reduce angular malunion and hardware failure secondary to delayed union or nonunion. This strategy improves the strength and alignment of the construct, but it may compromise the vascularity of the distal femur paradoxically impairing healing. This study investigates the effect of dual plating versus single plating on the perfusion of the distal femur. Ten matched pairs of fresh-frozen cadaveric lower extremities were assigned to either isolated lateral plating or dual plating of a single limb. The contralateral lower extremity was used as a matched control. A distal femoral locking plate was applied to the lateral side of ten legs using a standard sub-vastus approach. Five femurs had an additional 3.5mm reconstruction plate applied to the medial aspect of the distal femur using a medial sub-vastus approach. The superficial femoral artery and the profunda femoris were cannulated at the level of the femoral head. Gadolinium MRI contrast solution (3:1 gadolinium to saline ration) was injected through the arterial cannula. High resolution fat-suppressed 3D gradient echo sequences were completed both with and without gadolinium contrast. Intra-osseous contributions were quantified within a standardized region of interest (ROI) using customized IDL 6.4 software (Exelis, Boulder, CO). Perfusion of the distal femur was assessed in six different zones. The signal intensity on MRI was then quantified in the distal femur and comparison was made between the experimental plated limb and the contralateral, control limb. Following completion of the MRI protocol, the specimens were injected with latex medium and the extra-osseous vasculature was dissected. Quantitative MRI revealed that application of the lateral distal femoral locking plate reduced the perfusion of the distal femur by 21.7%. Within the dual plating group there was a reduction in perfusion by 24%. There was no significant difference in the perfusion between the isolated lateral plate and the dual plating groups. There were no regional differences in perfusion between the epiphyseal, metaphyseal or meta-diaphyseal regions. Specimen dissection in both plating groups revealed complete destruction of any periosteal vessels that ran underneath either the medial or lateral plates. Multiple small vessels enter the posterior condyles off both superior medial and lateral geniculate arteries and were preserved in all specimens. Furthermore, there was retrograde flow to the distal most aspect of the condyles medially and laterally via the inferior geniculate arteries. The medial vascular pedicle was proximal to the medial plate in all the dual plated specimens and was not disrupted by the medial sub-vastus approach in any specimens. Fixation of the distal femur via a lateral sub-vastus approach and application of a lateral locking plate results in a 21% reduction in perfusion to the distal femur. The addition of a medial 3.5mm reconstruction plate does not significantly compromise the vascularity of the distal femur. The majority of the vascular insult secondary to open reduction, internal fixation of the distal femur occurs with application of the lateral locking plate


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 66 - 66
1 May 2019
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases, the TKA is well fixed and has been functioning well prior to fracture. For fractures above well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating and nailing techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension. For certain fractures, distal femoral replacement (DFR) is a wise choice. The author reserves DFR for situations where internal fixation is likely to fail (severe distal osteolysis, severe osteopenia) or for cases where it has already failed (nonunion). Obviously, if the implant is loose, revision is indicated, and typically the distal bone loss is so severe that a distal femoral replacement is indicated. The author prefers cemented constructs and routinely adds antibiotics to the cement mixture. Careful attention to posterior dissection of the distal fragment is recommended to avoid neurovascular injury. Cementing the femoral component in the proper amount of external rotation is important to allow central patellar tracking. The available literature demonstrates excellent functional results with these reconstructions, however, complications are not uncommon. Infection and extensor mechanism complications are the most frequent complications and are best avoided. In summary, ORIF remains the treatment of choice for these fractures, however, for cases where ORIF is likely to fail, or has failed, DFR remains a predictable salvage option


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 100 - 100
1 Apr 2017
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Typically a megaprosthesis is required. Well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 67 - 67
1 Nov 2016
Haidukewych G
Full Access

Peri-prosthetic fractures above a total knee arthroplasty (TKA) are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well-fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Typically a megaprosthesis is required. For well-fixed components, internal fixation is preferred. Fixation options include retrograde nailing or lateral plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 54 - 54
1 Nov 2016
Birch C Blankstein M Bartlett C
Full Access

Periprosthetic femoral shaft fractures are a significant complication of total hip arthroplasty. Plate osteosynthesis with or without onlay strut allograft has been the mainstay of treatment around well-fixed stems. Nonunions are a rare, challenging complication of this fixation method. The number of published treatment strategies for periprosthetic femoral nonunions are limited. In this series, we report the outcomes of a novel orthogonal plating surgical technique for addressing nonunions in the setting of Vancouver B1 and C-type periprosthetic fractures that previously failed open reduction internal fixation (ORIF). A retrospective chart review of all patients from 2010 to 2014 with Vancouver B1/C total hip arthroplasty periprosthetic femoral nonunions was performed. All patients were treated primarily with ORIF. Nonunion was defined as no radiographic signs of fracture healing nine months post-operatively, with or without hardware failure. Exclusion criteria included open fractures and periprosthetic infections. The technique utilised a mechanobiologic strategy of atraumatic exposure, resection of necrotic tissue, bone grafting with adjuvant recombinant growth factor and revision open reduction internal fixation. Initially, compression was achieved using an articulated tensioning device and application of an anterior plate. This was followed by locked lateral plating. Patients remained non-weight bearing for eight weeks. Six Vancouver B1/C periprosthetic femoral nonunions were treated. Five patients were female with an average age of 80.3 years (range 72–91). The fractures occurred at a mean of 5.8 years (range 1–10) from their initial arthroplasty procedure. No patients underwent further revision surgery; there were no wound dehiscence, hardware failures, infections, or surgical complications. All patients had a minimum of nine months follow up (mean 16.6, range 9–36). All fractures achieved osseous union, defined as solid bridging callus over at least two cortices and pain free, independent ambulation, at an average of 24.4 weeks (range 6.1–39.7 weeks). To our knowledge, this is the first case series describing 90–90 locked compression plating using modern implants for periprosthetic femoral nonunions. This is a rare but challenging complication of total hip arthroplasty and we present a novel solution with satisfactory preliminary outcomes. Orthogonal locked compression plating utilising an articulated tensioning device and autograft with adjuvant osteoinductive allograft should be considered in periprosthetic femur fractures around a well-fixed stem. Further biomechanical and clinical research is needed to improve our treatment strategies in this population


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 15 - 15
1 Apr 2013
Kim J Oh CW Oh JK Lee HJ Kyung HS
Full Access

Background. To establish relative fixation strengths of a single lateral locking plate, a double locking plate, and a tibial nail in treatment of proximal tibial extra-articular fractures. Methods. Three groups of composite tibial synthetic bones consisting of 5 specimens per group were included; lateral plating (LP) using a LCP-PLT (locking compression plate-proximal lateral tibia), double plating (DP) using a LCP-PLT and a LCP-MPT (locking compression plate-medial proximal tibia), and intramedullary nailing (IN) using an ETN (expert tibial nail). To simulate a comminuted fracture model, a gap osteotomy measuring 1 cm was cut 8 cm below the joint. For each tibia, a minimal preload of 100N was applied before loading to failure. A vertical load was applied at 25mm/min until tibia failure. Results. For axial loading, fixation strength of DP (14387.3N, SD=1852.1) was 17.5% greater than that of LP (12249.3N, SD=1371.6), and 60% less than that of IN (22879.6N, SD=1578.8) (p<0.001). For ultimate displacement in axial loading, similar results were observed for LP (5.74mm, SD=1.01) and DP (4.45mm, SD=0.96), with a larger displacement for IN (5.84mm, SD=0.99). Conclusion. In biomechanical testing of a comminuted proximal tibial fracture model, DP proved stronger than LP in terms of ultimate strength. IN proved strongest; however, DP may be an acceptable alternative for minimally invasive osteosynthesis, which may be technically difficult to fix using a nail


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 48 - 48
1 May 2012
Adie S Ansari U Harris I
Full Access

Practice variation may occur when there is no standardised approach to specific clinical problems and there is a lack of scientific evidence for alternative treatments. Practice variation suggests that a segment of the patient population may be managed sub-optimally, and indicates a need for further research in order to establish stronger evidence-based practice guidelines. We surveyed Australian orthopaedic surgeons to examine practice variation in common orthopaedic presentations. In February 2009, members of the Australian Orthopaedic Association were emailed an online survey, which collected information regarding experience level (number of years as a consultant), sub-specialty interests, state where the surgeon works, on- call participation, as well as five common (anecdotally controversial) orthopaedic trauma cases with a number of management options. Surgeons were asked to choose their one most likely management choice from the list provided, which was either surgical or non-surgical in nature. A reminder was sent two weeks later. Exploratory regression was modeled to examine the predictors of choosing surgical management for each case and overall. Of 760 surgeons, 358 (47%) provided responses. For undisplaced scaphoid fractures, respondents selected short-arm cast (53%), ORIF (22%), percutaneous screw (22%) and long-arm cast (3%). Less experienced (0 to 5 years) (p=0.006) and hand surgeons (p=0.008) were more likely to operate. For a displaced mid-shaft clavicle fracture, respondents selected non-operative (62%), plating (31%) and intramedullary fixation (7%). Shoulder surgeons were more likely to operate (p<0.001). For an undisplaced Weber B lateral malleolus fracture, respondents selected plaster cast or boot (59%), lateral plating (31%), posterior plating (9%) and no splinting (2%). For a displaced Colles fracture in an older patient, respondents selected plating (47%), Kirschner wires (28%), cast/splint (23%) and external fixation (1%). Less experienced (p<0.001) and hand surgeons (p=0.024) were more likely to operate. For a two-part neck of humerus fracture in an older patient, respondents selected non-operative (74%), locking plate (14%), and hemiarthroplasty (7%). Shoulder surgeons were more likely to operate (p<0.001). Accounting for all answers in multiple regression modeling, it was found that more experienced surgeons (>15 years) were 25% less likely to operate (p=0.001). Overall, there was no difference among sub-specialties, or whether a surgeon participated in an on-call roster. Considerable practice variation exists among orthopaedic surgeons in the approach to common orthopaedic problems. Surgeons who identify with a sub-specialty are more likely to manage conditions in their area of interest operatively, and more experienced surgeons are less likely to recommend surgical management


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 67 - 67
1 Dec 2016
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Often, distal femoral mega prostheses are required to deal with metaphyseal bone loss. Good results have been reported in small series, however, complications, including infection remain concerning, and these implants are incredibly expensive. Although performing a mega prosthesis in the setting of a well fixed TKA is not unreasonable due to immediate full weight bearing, in my opinion, prosthetic replacement should be limited to cases of failed ORIF (rare), or in cases where fixation is likely to fail (i.e., severe osteolysis distally). For the majority of fractures above well fixed components, internal fixation is preferred for the main reason that the overwhelming majority of these fractures will heal. Fixation options include retrograde nailing or lateral locked plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_5 | Pages 5 - 5
1 Feb 2013
Bugler K Watson C Hardie A Appleton P McQueen M Court-Brown C White T
Full Access

Lateral malleolar plating is associated with complication rates of up to 30%. The fibular nail is an alternative fixation technique, requiring a minimal incision and tissue dissection, with the potential to reduce the incidence of complications. We reviewed our results of 105 unstable ankle fractures fixed with the Acumed fibular nail between 2002 and 2010. The mean age was 65 years and 72% of patients had significant systemic medical comorbidities. A number of different locking screw configurations were assessed over the study period. A proximal blocking screw resulted in satisfactory stability in 93%, single locking screws in 86%, but nailing without locking in only 66%, leading to the development of our current technique. Of the twenty-one patients treated with this technique there have been no significant complications, and only two superficial wound infections. Good fracture reduction was achieved in all of these patients. The mean physical component SF12, Olerud and Molander and Foot and Ankle Outcome scores were 46, 65 and 83 respectively. The outcomes of unstable ankle fractures managed with the fibular nail are encouraging, with good radiographic and functional outcomes and minimal complications. This technique should be considered in the management of debilitated patients with unstable ankle fractures


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 55 - 55
1 Jul 2014
Haidukewych G
Full Access

Peri-prosthetic fractures above a TKA are becoming increasingly more common, and typically occur at the junction of the anterior flange of the femoral component and the osteopenic metaphyseal distal femur. In the vast majority of cases the TKA is well-fixed and has been functioning well prior to fracture. For loose components, revision is typically indicated. Often, distal femoral mega prostheses are required to deal with metaphyseal bone loss. Good results have been reported in small series, however, complications, including infection remain concerning, and these implants are incredibly expensive. Although performing a mega prosthesis in the setting of a well-fixed TKA is not unreasonable due to immediate full weight bearing, in my opinion, prosthetic replacement should be limited to cases of failed ORIF (rare), or in cases where fixation is likely to fail (i.e., severe osteolysis distally). For the majority of fractures above well-fixed components, internal fixation is preferred for the main reason that the overwhelming majority of these fractures will heal. Fixation options include retrograde nailing or lateral locked plating. Nails are typically considered in arthroplasties that allow intercondylar access (“open box PS” or CR implants) and have sufficient length of the distal fragment to allow multiple locking screws to be used. This situation is rare, as most distal fragments are quite short. If a nail is chosen, use of a long nail is preferred, since it allows the additional fixation and alignment that diaphyseal fill affords. Short nails should be discouraged since they can “toggle” in the meta-diaphysis and do not engage the diaphysis to improve coronal alignment. Plates can be used with any implant type and any length of distal fragment. The challenge with either fixation strategy is obtaining stable fixation of the distal fragment while maintaining length, alignment, and rotation. Fixation opportunities in the distal fragment can be limited due to obstacles caused by femoral component lugs, boxes, stems, cement mantles, and areas of stress shielding or osteolysis. Modern lateral locked plates can be inserted in a biologically friendly submuscular extra-periosteal fashion. More recent developments with polyaxial locked screws (that allow angulation prior to end-point locking) may offer even more versatility when distal fragment fixation is challenging. The goal of fixation is to obtain as many long locked screws in the distal fragment as possible. High union rates have been reported with modern locked plating techniques, however, biplanar fluoroscopic vigilance is required to prevent malalignments, typically valgus, distraction, and distal fragment hyperextension


Bone & Joint Research
Vol. 4, Issue 2 | Pages 23 - 28
1 Feb 2015
Auston DA Werner FW Simpson RB

Objectives

This study tests the biomechanical properties of adjacent locked plate constructs in a femur model using Sawbones. Previous studies have described biomechanical behaviour related to inter-device distances. We hypothesise that a smaller lateral inter-plate distance will result in a biomechanically stronger construct, and that addition of an anterior plate will increase the overall strength of the construct.

Methods

Sawbones were plated laterally with two large-fragment locking compression plates with inter-plate distances of 10 mm or 1 mm. Small-fragment locking compression plates of 7-hole, 9-hole, and 11-hole sizes were placed anteriorly to span the inter-plate distance. Four-point bend loading was applied, and the moment required to displace the constructs by 10 mm was recorded.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 16 - 18
1 Oct 2014

The October 2014 Foot & Ankle Roundup360 looks at: multilayer compression bandaging superior for post-traumatic ankle oedema; compression stockings for ankle fractures; weight bearing ok in Achilles tendon ruptures; MRI findings can predict ankle sprain symptoms; salvage for malreduced ankle fractures; locking fibular plates are more expensive; is fixation better early or late in pilon fractures?; and calcaneal fracture fixation not for subtalar arthropathy