Aims. Cemented hemiarthroplasty is an effective form of treatment for most patients with an intracapsular
Periprosthetic fractures (PPFs) following hip arthroplasty are complex injuries. This study evaluates patient demographic characteristics, management, outcomes, and risk factors associated with PPF subtypes over a decade. Using a multicentre collaborative study design, independent of registry data, we identified adults from 29 centres with PPFs around the hip between January 2010 and December 2019. Radiographs were assessed for the Unified Classification System (UCS) grade. Patient and injury characteristics, management, and outcomes were compared between UCS grades. A multinomial logistic regression was performed to estimate relative risk ratios (RRR) of variables on UCS grade.Aims
Methods
Aims. There are reports of a marked increase in perioperative mortality in patients admitted to hospital with a
We aimed to establish if radiological parameters, dual energy x-ray absorbtiometry (DEXA) and quantitative CT (qCT) could predict the risk of sustaining a femoral neck fracture following hip resurfacing. Twenty-one unilateral fresh frozen femurs were used. Each femur had a plain AP radiograph, DEXA scan and quantitative CT scan. Femurs were then prepared for a Birmingham Hip Resurfacing femoral component with the stem shaft angle equal to the native neck shaft angle. The femoral component was then cemented onto the prepared femoral head. No notching of the femoral neck occurred in any specimens. A repeat radiograph was performed to confirm the stem shaft angle. The femurs were then potted in a position of single leg stance and tested in the axial direction to failure using an Instron mechanical tester. The load to failure was then analysed with the radiological, DEXA and qCT parameters using multiple regression. The strongest correlation with the load to failure values was the total mineral content of the femoral neck at the head/neck junction using qCT r= 0.74 (p<
0.001). This improved to r=0.76 (p<
0.001) when neck width was included in the analysis. The total bone mineral density measurement from the DEXA scan showed a correlation with the load to failure of r=0.69 (p<
0.001). Radiological parameters only moderately correlated with the load to failure values; neck width (r=0.55), head diameter (r= 0.49) and femoral off-set (r=0.3). This study suggests that a patient’s risk of femoral neck fracture following hip resurfacing is most strongly correlated with total mineral content at the head/neck junction and bone mineral density. This biomechanical data suggests that the risk of post-operative femoral neck fracture may be most accurately identified with a pre-operative quantitative CT scan through the head/neck junction combined with the femoral neck width.
We aimed to establish if radiological parameters, dual energy x-ray absorbtiometry (DEXA) and quantitative CT (qCT) could predict the risk of sustaining a femoral neck fracture following hip resurfacing. 21 unilateral fresh frozen femurs were used. Each femur had a plain AP radiograph, DEXA scan and quantitative CT scan. Femurs were then prepared for a Birmingham Hip Resurfacing femoral component with the stem shaft angle equal to the native neck shaft angle. The femoral component was then cemented onto the prepared femoral head. No notching of the femoral neck occurred in any specimens. A repeat radiograph was performed to confirm the stem shaft angle. The femurs were then potted in a position of single leg stance and tested in the axial direction to failure using an Instron mechanical tester. The load to failure was then analysed with the radiological, DEXA and qCT parameters using multiple regression. The strongest correlation with the load to failure values was the total mineral content of the femoral neck at the head/neck junction using qCT r= 0.74 (p<
0.001). This improved to r=0.76 (p<
0.001) when neck width was included in the analysis. The total bone mineral density measurement from the DEXA scan showed a correlation with the load to failure of r=0.69 (p<
0.001). Radiological parameters only moderately correlated with the load to failure values; neck width (r=0.55), head diameter (r= 0.49) and femoral off-set (r=0.3). This study suggests that a patient’s risk of femoral neck fracture following hip resurfacing is most strongly correlated with total mineral content at the head/neck junction and bone mineral density. This biomechanical data suggests that the risk of post-operative femoral neck fracture may be most accurately identified with a pre-operative quantitative CT scan through the head/neck junction combined with the femoral neck width.
The intact femur geometry was derived from a CT dataset of a cadaveric femur and CT numbers were converted into a realistic distribution of material properties. The FE intact mesh was based on an experimentally validated mesh of a human femur. The femur was segmented into 22 neck sections. The loading condition was modelled to represent an instant at 10% of gait where all muscle forces were included. The femoral neck regions were compared between the models to evaluate the effect of notch sizes on stress distribution. Maximum tensile stresses were compared to the ultimate tensile stress (UTS) of cortical and cancellous bone.
Aims. A
Purpose of the study: Few data are available concerning the proper management of patients with a periprosthetic
Aims. Surgical treatment of
Aim:
Femoral neck fracture is a common short-term hip resurfacing failure mode, but later term fractures are starting to be reported. The fracture pattern may indicate whether etiology is primarily mechanical or biological Central 3mm thick coronal slices were cut from each of 50 cemented and 2 cementless fractured femoral components (27 males, 25 females). Fracture patterns were grouped as: “edge to edge”, “inside head”, “outside” and “edge to outside”1. Sections were decalcified and processed for routine histology to examine viability and remodelling. Bone viability was judged on the presence of osteocyte nuclei. Components were judged to be unseated if the cement mantle was more than twice the manufacturers recommended thickness. Histological and clinical data were correlated with fracture pattern. Overall average time to fracture was 6 months (1–85 months). There were 25 “edge to edge”, 12 “inside head”, 4 “outside” and 11 “edge to outside” fractures, which occurred after a median of 2.0, 13, 1.5, and 2.0 months respectively. The majority of the heads were viable, and the fractures occurred through a region of healing bone involving one or both edges. Fifteen heads with a substantial proximal avascular segment fractured at the interface between necrotic and viable bone, typically inside the component. Eleven implants (21%) were considered unseated. All 4 “outside” fractures were found to be unseated. All “inside head” fractures were seated, but 83% (10/12) of them were found to be avascular. The latest failure (85 months) occurred in association with wear-induced osteolysis. Both cementless components fractured early with an “edge to outside” pattern and were found to be substantially avascular. Avascular heads failed from one month to four years, usually inside the component. Viable heads tended to fracture early through an area of healing bone at or below the rim. Most fractures were technical failure-sand might be avoided with better patient selection and surgical technique.
Metal-on-metal hip resurfacing prostheses are a relatively recent intervention for relieving the symptoms of common musculoskeletal diseases such as osteoarthritis. While some short term clinical studies have offered positive results, in a minority of cases there is a recognised issue of femoral fracture, which commonly occurs in the first few months following the operation. This problem has been explained by a surgeon's learning curve and notching of the femur but, to date, studies of explanted early fracture components have been limited. Tribological analysis was carried out on fourteen retrieved femoral components of which twelve were revised after femoral fracture and two for avascular necrosis (AVN). Eight samples were Durom (Zimmer, Indiana, USA) devices and six were Articular Surface Replacements (ASR, DePuy, Leeds, United Kingdom). One AVN retrieval was a Durom, the other an ASR. The mean time to fracture was 3.4 months. The AVNs were retrieved after 16 months (Durom) and 38 months (ASR). Volumetric wear rates were determined using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy within 1 micron) and a bespoke computer program. The method was validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was accurate to within 0.5mm3. Surface roughness data was collected using a Zygo NewView500 interferometer (resolution 1nm). Mean wear rates of 17.74mm3/year were measured from the fracture components. Wear rates for the AVN retrievals were 0.43mm3/year and 3.45mm3/year. Mean roughness values of the fracture retrievals (PV = 0.754nm, RMS = 0.027nm) were similar to the AVNs (PV = 0.621nm, RMS = 0.030nm), though the AVNs had been in vivo for significantly longer. Theoretical lubrication calculations were carried out which found that in both AVN retrievals and in seven of the twelve cases of femoral fracture the roughening was sufficient to change the lubrication regime from fluid film to mixed. Three of these surfaces were bordering on the boundary lubrication regime. The results show that even before the femoral fracture, wear rates and roughness values were high and the implants were performing poorly.
Austin Moore cervicocephalic prostheses have been a therapeutical option for femoral neck fractures in patients with a reduced general condition for many years. Since treatments other than total hip arthroplasties have also been included in National arthroplasty registers during the last decade, adequate reference data for comparative analyses have recently become available. Based on a standardised methodology, a comprehensive literature analysis of clinical literature and register reports was conducted. On the one hand, the datasets were examined with regard to validity and the occurrence of possible bias factors, on the other hand, the objective was to compile a summary of the data available. The main criterion is the indicator of Revision Rate. The definitions used with respect to revisions and the methodology of calculations are in line with the usual standards of international arthroplasty registers.Introduction
Materials and Methods
Metal-on-metal hip resurfacing prostheses are a relatively recent intervention for relieving the symptoms of common musculoskeletal diseases such as osteoarthritis. While some short term clinical studies have offered positive results, in a minority of cases there is a recognised issue of femoral fracture, which commonly occurs in the first few months following the operation. This problem has been explained by a surgeon's learning curve and notching of the femur but, to date, studies of explanted early fracture components have been limited. Tribological analysis was carried out on fourteen retrieved femoral components of which twelve were revised after femoral fracture and two for avascular necrosis (AVN). Eight samples were Durom (Zimmer, Indiana, USA) devices and six were Articular Surface Replacements (ASR, DePuy, Leeds, United Kingdom). One AVN retrieval was a Durom, the other an ASR. The mean time to fracture was 3.4 months. The AVNs were retrieved after 16 months (Durom) and 38 months (ASR). Volumetric wear rates were determined using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy within 1 micron) and a bespoke computer program. The method was validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was accurate to within 0.5mm3. Surface roughness data was collected using a Zygo NewView500 interferometer (resolution 1nm). Mean wear rates of 17.74mm3/year were measured from the fracture components. Wear rates for the AVN retrievals were 0.43mm3/year and 3.45mm3/year. Mean roughness values of the fracture retrievals (PV = 0.754, RMS = 0.027) were similar to the AVNs (PV = 0.621, RMS = 0.030), though the AVNs had been in vivo for significantly longer. Theoretical lubrication calculations were carried out which found that in both AVN retrievals and in seven of the twelve cases of femoral fracture the roughening was sufficient to change the lubrication regime from fluid film to mixed. Three of these surfaces were bordering on the boundary lubrication regime. The results show that even before the femoral fracture, wear rates and roughness values were high and the implants were performing poorly.
Old age, osteopaenia, alcohol abuse, and large cysts are risk factors for fractures. It has been suggested that performing a bilateral resurfacing puts the first side at risk of fracture from the force used in implanting the second resurfacing. Is this a true risk or a sampling error?
The low incidence of fractures (2/382, 0.5%) in this bilateral resurfacing series does not support the view that there is an increased risk of fracture from a bilateral procedure.
Abstract. Introduction. In general the life expectancy of population is improving. This is causing to increase case load of peri-prosthesis fractures after joint replacements. We present our results of peri-prosthesis
Introduction: Previous studies have demonstrated the value of the tip-apex distance (TAD) and the location of the screw in the femoral head in predicting cut-out. Similarly surgeons’ volume has been shown to affect mortality and morbidity in various surgical specialties, including in trauma and orthopaedics. Aim: To determine whether re-operation due to cut out at six month can be predicted using TAD, location of the screw and fracture type; and whether the experience of the surgeon is important. Methods: Logistic regression was used to analyse data collected retrospectively from 241 patients with extracapsular fractures (Jensen’s modification of Evans’ classification: Class I – 90, Class II – 93 and Class III – 58), treated with a dynamic hip screw, classic hip screw or intramedullary hip screw from April 2005 to October 2007. Results: There were 7 cut outs (2.5%) requiring re-operation within 6 months – 1 in the consultant group and 6 in the trainee group,. The model used was statistically significant (X2=23.6 [13df], p<
0.05). The tip-apex distance was a strong predictor (p<
0.05) of cut-out requiring re-operation at six months. The odds of the patient requiring re-operation due to cut out increases by a factor of 1.2 for each millimetre increase in the TAD. Location of the
Aims. The aim of this study was to describe the current pathways of care for patients with a
Aims. Femoral periprosthetic fractures are rising in incidence. Their management is complex and carries a high associated mortality. Unlike native
Introduction. Management of Vancouver type B1 and C periprosthetic fractures in elderly patients requires fixation and an aim for early mobilisation but many techniques restrict weightbearing due to re-fracture risk. We present the clinical and radiographic outcomes of our technique of total femoral plating (TFP) to allow early weightbearing whilst reducing risk of re-fracture. Methods. A single-centre retrospective cohort study was performed including twenty-two patients treated with TFP for