Introduction. Malrotation following total knee replacement is directly related to poor outcome. The knowledge of proximal and distal rotational axes and angles of the femur is therefore of high importance. The aim of the study was to determine whether the most used proximal and distal femoral
Prosthetic impingement after THA is to different for the angle and shape of the implant. Purpose of this study is examine the range of motion(ROM) on a computer when angle and shape of the implant are changed. The 3D implant models were created on a computer. The angle was measured in the flexion, extension, adduction direction byevery 0.1 degrees. There are three kinds of acetabular abduction angle, two kinds of acetabular anteversion angle and two kinds of
Background. High tibial osteotomy is a common procedure to treat symptomatic osteoarthritis of the medial compartment of the knee with varus alignment. This is achieved by overcorrecting the varus alignment to 2–6° of valgus. Various high tibial osteotomy techniques are currently used to this end. Common procedures are medial opening wedge and lateral closing wedge tibial osteotomies. The lateral closing wedge technique is a primary stable correction with a high rate of consolidation, but has the disadvantage of bone loss and change in tibial condylar offset. The medial opening wedge technique does not result in any bone loss but needs to be fixated with a plate and may cause tibial slope and medial collateral ligament tightening. Purpose. The purpose of this article is to examine correlation between
Purpose. Computer navigation system has been reported as a useful tool to obtain the proper alignment of lower leg and precise implantation in TKA. This system alsoãζζhas shown the accurate gap balancing which was lead to implants longevity and optimal knee function. The aim of this study was determine that the postoperative acquired deep knee flexion would be influenced by intraoperative kinematics on navigated TKA even under anesthesia. Materials & methods. Forty knees from 40 patients, who underwent primary TKA (P.F.C. sigma RPF, DePuy Orhopaedic International, Leed, UK) with computer-navigation system (Ci Knee, BrainLAB / DePuy Inc, Leeds, UK), were recruited in this study. These patients were classified into two groups according to the recorded value of maximum knee flexion at three month after surgery: 15 patients who obtained more than 130 degrees of flexion in Group A, and 25 patients less than 130 degrees in Group B. We retrospectively reviewed about intraoperative kinematics in each group, to obtain the clue for post operative deep-flexion. The measurements of intraoperative kinematics were consisted of 3 points:
Patello-femoral tracking and polyethylene wear are strongly dependent on rotational alignment of the components in total knee arthroplasty. In the current literature four methods to obtain correct axial femoral alignment are reported: the transepicondylar axis method, Whiteside’s method, the tibial axis method and 3° external rotation of posterior condyles method. Because of its simplicity the last of these is the most popular method used at present. But it is also the most accurate? The purpose of this study was to investigate the accuracy of the 3° external rotation method, comparing it to the transepicondylar axis and the White-side’s A-P line. We performed a CT scan examination of the hip and the knee of 40 patients scheduled to undergo a total knee arthroplasty. Seven cases of valgus deformity were excluded from the study, leaving 34 cases. The mean age was 72.4 and the left knee was involved in 23 cases. The mean height was 159 cm and the mean weight was 76.6 kg. The mean varus deformity was 14° (min 5° – max 30°). CT scan was conducted using a Picker PQCT machine. Two axial images were obtained in all the patients: one of the femoral neck and one of the knee with good visualisation of the posterior aspect of the condyles of the femur and epicondyles. We measured the following
There are few studies that have compared between continuous flexion activities and extension activities of normal knees. The purpose of this study is to compare in vivo kinematic comparison of normal knees between flexion activities and extension activities. Total of 8 normal male knees were investigated. We evaluated in vivo three-dimensional kinematics using 2D/3D registration technique. We compared
Introduction. One of the objectives of total hip arthroplasty is to restore femoral and acetabular combined anteversion. It is desirable to reproduce both femoral and acetabular antevesions to maximize the acetabular cup fixation coverage and hip joint stability. Studies investigated the resultant of implanted femoral stem anteversion in western populations showed that the implanted femoral stems had only a small portion can meet the desirable
The pourpose of this study was to investigate the variability of the posterior condylar angle and the whiteside’s angle to establish if three degrees of external rotation of the femoral component produce the correct rotational alignment, in varus knee. 33 patients (33 knee) affected by varus osteoarthritic knee (5°–30°)underwent a preoperative CT scan examination of the knee and the hip. On the axial views, we have evaluated the femoral anteversion, the posterior condylar angle and the whitesiede’s angle. The mean
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
Purpose. The complication of patellofemoral compartment was quite often in total knee arthroplasty. One of the impotant factors in these complications would be the femoral component rotation in TKA. To determine the rotation of the femoral component, the reference of the surgical epicondylar axis (SEA), posterior condylar axis (PCA), AP axis with three dimensional model achieved from computed tomography data were considered. There are some limitations with pre-oprerative CT-based planning such as radio exposure, cost, time and detection of the depth of cartilage. We evaluate the determination of the femoral component rotation with image-free registration method to compare with three-dimensional template system. Material and Methods. Thirty six knees were evaluated to determine the femoral component rotation. The reference points were marked to measure the PCA (posterior condylar axis), SEA (surgical transepicondylar axis), and APA (anteroposterior axis, Whiteside line) intra-operatively and calculated the angle from PCA to SEA and PCA to APA with Image free navigation system (BrainLAB). Those knees were preoperatively evaluated the angle deviation from SEA to PCA with three dimensional template system. These angle deviations, which suggested the femoral component rotation obtained from preoperative template system, were statistically compared with the
Combined anteversion angle of acetabular component and femeral neck is an important factor for total hip arthroplasty (THA) as it may affect impingement and dislocation. Previous studies have collected data mainly from direct measurements of bone morphology or manual measurements from 2D or 3D radiolographic images. The purpose of this study was to electronically measure the version angles in native acetabulum and femur in matured normal Caucasion population using a novel virtual bone database and analysis environment named SOMA™. 221 CT scans from a skeletally mature, normal Caucasian population with an age range of 30–95 years old. The population included 135 males and 86 females. CT data was converted to virtual bones with cortical and cancellous boundaries using custom CT analytical sofware. (SOMA™ V.3.2) Auxillary reference frames were constructed and measurements were performed within the SOMA™ design environment. Acetabular Anteversion (AA) angle as defined by Murray. 1. was measured. The acetabular rim plane was constructed by selecting 3 bony land marks from pubis, ilium and ischium. A vector through acetabular center point and normal to the rim plane defined the plane for the AA measurement. The AA was defined as the angle of this plane relative to the frontal (Coronal) plane of the pelvis. The Femoral Neck Anteversion (FNA) angle was measured from the neck axis plane to the frontal (Coronal) plane as defined by the posterior condyles. The neck axis plane was constructed to pass through femoral neck axis perpendicular to the transverse plane. The combined anteversion angle was computed as the summation of acetabular and
INTRODUCTION The ability to evaluate the alignment of total knee arthroplasty using postoperative radiographs might be confounded by limb rotation. The aim of the presented study was therefore to measure the effect of limb rotation on postoperative radiographic assessment and to introduce a mathematical correction to calculate the true axial alignment in cases of a confounded radiograph. METHODS A synthetic lower left extremity (Sawbones®, Inc,Vashon Island, WA) was used to create a total knee arthroplasty of the Interax I.S.A.® knee prosthesis system (Stryker, Limerick, Ireland). Laser guided measurement of the tibia showed a femoral valgus angle of 6.5° postoperatively. The model was fixed in an upright stand which positioned the limb in varying degrees of rotation. Four series of 10 antero-posterior (AP) radiographs were taken with the knee in full extension, with femoral limb rotation ranging from 20° external rotation to 20° internal rotation in respect to the x-ray beam, in 5° increments. After digitizing each radiograph, four observer independently measured the femoral valgus angle for each series of the long leg radiographs using a digital measurement software (MEDICAD®, Hectec, Altfraunhofen, Germany). Each observer was instructed to determine the femoral valgus angle following the software’s guidelines. In addition each observer measured the geometrical distances of the femoral component figured on the radiographic film. Using a student t-test, the effect of femoral limb rotation on the measured femoral valgus angle and a correlation between femoral rotation and femoral valgus angle was established. Then for each limb rotation the distances ratio was determined to calculate the limb rotation. RESULTS Without an application of femoral rotation the femoral valgus angle was measured radiographically to be 6.5° (SD 0.4°). With external femoral rotation the measured femoral valgus angle linearly decreased to a minimum of 4.5° (SD 0.2°) at 20° femoral rotation. The linear regression (R2=0.94) calculated a 0.09° change of radiographically measured femoral valgus
Introduction: It is difficult to measure the knee kinematics after TKA, navigation system can measure the knee kinematics during TKA operation. The purpose of this study is to describe the knee kinematic analysis in TKA using navigation system. Patients and methods: TKA kinematics was measured in 24 patients (7 men and 17 women) 27 knees (7 rheumatoid arthritis knees and 20 osteoarthritis knees) in this study. Mean age was 72.8 (55–81). The TKA implant was Vanguard PS (Biomet, Warsaw) and navigation system was Vector Vision Knee ver. 1.6 (BrainLab Inc). All patients were operated using navigation system. This system was CT-based navigation system. We cut the bone independently and released medial collateral ligament, joint capsule and other tight structures to equal the joint balance. Femoral component was implanted parallel to clinical epicondylar line. Kinematic Analysis: We measured the joint gap (mm), coronal alignment (degree), antero-posterior translation (mm) and
For radiographic assessment of THA, we must estimate a 3-D structure with 2-D images. Basically, it has been good. But even after a successful surgery, sometimes we encountered an undersized stem in radiograph. Interestingly, it was more frequent after we introduced surgical robot for primary THA. It sometimes brought a huge dilemma during planning and evaluating the surgery. We performed this study to elucidate the cause of this problem. We used image data of 30 consecutive THAs using ROBODOC (ISS, USA). The measurement was made with the built-in tool in the Orthodoc, which is for the CT-based preoperative planning, and digital imaging system (PiView, Infinitt, Korea). We measured