Advertisement for orthosearch.org.uk
Results 1 - 20 of 61
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 43 - 43
1 Jan 2016
Miura Y Oinuma K Tamaki T Kaneyama R Higashi H Shiratsuchi H
Full Access

Introduction. Total hip arthroplasty (THA) using short design stem is surging with increasing movement of minimally invasive techniques. Short stems are easier to insert through small incisions preserving muscles. We have used these types of short stems since 2010. Almost all of the patients have shown good clinical results. However, two patients developed fatigue fractures on femurs post operatively. We have reviewed the clinical and radiographic results of these patients. Patients and methods. From April 2010, we have performed 621 THAs with short design stems, Microplasty. R. , Biomet, using a muscle preservation approach, the Direct Anterior Approach (DAA). The age ranged from 31 to 88 years old. Case1: 56y.o. male, BMI 23.1kg/m. 2. Preoperative diagnosis was bilateral osteoarthritis. Simultaneous THAs were performed on bilateral hips. He was allowed to bear as much weight as he could tolerate using an assistive device immediately after surgery, and followed standard hip precautions for the first 3 weeks. He was discharged from hospital seven days after surgery and returned to his job two weeks after surgery. He noticed sudden left thigh pain three weeks after surgery without any obvious cause. Crutches were recommended to partially bear his weight. Six weeks after surgery, a fracture line became visible on the radiographs and new callus formation also became visible. Three months after surgery, he felt no pain and was able to walk without any crutches. Case2: 66y.o. female, BMI 27.5 kg/m. 2. Preoperative diagnosis was bilateral osteoarthritis. THAs were performed on the hips at a six month interval. The right hip was operated on first, followed by the left hip. She was discharged from hospital four days after surgery and returned to her job six weeks after surgery. Two months later after left hip surgery, she suddenly felt pain on her left femur without any obvious cause, and was unable to walk. Three weeks later, X-rays showed fatigue fracture lines and new callus formations. After two or three months using crutches, her pain improved and X-rays showed good callus formation and no stem subsidence. Discussions. Several reports showed insufficiency fractures of the pelvis following THA. But most of them occurred due to repetitive stress on fragile bones. But our cases showed no evidence of osteoporosis. They had no history of trauma. But they had some points in common, which were they were bilateral cases and their BMI were not low. The incident rate of fatigue fractures of femur with this short stem THAs was 0.3% in our cases. We suggested that one of the causes of these fatigue fractures was the shortness of the stems. The shortness of the stems concentrate the body weight to limited contact area of the femur, and the stress causes the fatigue fractures. We should consider the risk of fatigue fractures on the patients who are operated on bilaterally. However these two patients showed good callus formations and no stem subsidence after a few weeks of partial weight bearing


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 329 - 329
1 May 2009
Kim H Koo K Yoo JJ
Full Access

Introduction: We evaluated the follow-up results of subchondral fatigue fractures of the femoral head. Methods: Between July 1999 and August 2005, 10 male patients presented with a collapsed subchondral fatigue fracture of the femoral head. The flattening of the femoral head was mild in 4 cases, moderate in 3 cases and severe in 3 cases. Three cases were misdiagnosed as osteonecrosis and since treated with multiple drillings or bone grafts. One case was treated with impaction bone grafting. The remaining cases were treated non-operatively. All patients were followed more than 2 years after onset of hip pain. Results: At the latest follow-up, no patient had remarkable pain or disability limiting daily activity. Degenerative changes of Tönnis grade 1 were observed in 5 cases. Discussion: Unlike collapsed osteonecrosis, collapsed subchondral fracture of the femoral head had a benign clinical course


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 147 - 147
1 Feb 2004
Kim H Song W Yoo J Koo K Kim Y
Full Access

Introduction: Stress fracture of the femoral head is a rare condition and usually occurs in people with poor bone quality as an insufficiency fracture. We evaluated the clinical aspects of subchondral fatigue fractures of the femoral head (SFFFH) that occurred in young healthy people. Materials and Methods: Between January 1998 and November 2001, 7 cases of SFFFH in 5 patients were treated. The characteristics of this condition were ascertained by assessing the clinical course and findings of radiographs, bone scintigrams, and magnetic resonance (MR) images. Results: All patients were male military recruits in their early twenties. Pain developed within 6 months after recruitment. On initial radiographs, definite abnormal findings were observed in 3 hips of 2 patients. In 2 of them, the femoral head was markedly collapsed. In the other 4 hips, no definite abnormal findings were noticed. The bone scintigrams showed increased radionuclide uptake in the femoral head. MR images demonstrated localized abnormal signal intensity areas (bone marrow edema pattern) in the femoral head. In all cases, MR crescent signs were observed. In the cases without collapse of the femoral head, the pain decreased gradually and disappeared completely in 6 months with improving findings on follow-up MR images. The collapsed cases needed surgical treatment: total hip arthroplasty or strut iliac bone grafting. Discussion: When a military recruit or an athlete is complaining of hip pain, a high index of suspicion for SFFFH is necessary to prevent the collapse of the femoral head. Bone scintigrams are of great value as a screening tool. Osteonecrosis of the femoral head can be differentiated by the findings on MR images


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 8 - 8
1 Jul 2012
Sarraf K Abdul-Jabar H Wharton R Shah G Singer G
Full Access

Femoral component fracture is a rarely reported but devastating complication of total knee arthroplasty. It has occurred most frequently with Whiteside Ortholoc II replacements uncemented knee replacements. Presentation may be with acute pain, progressive pain or returning deformity. It occurs more commonly in the medial condyle of the femoral component. It is rarely seen in cemented replacements. All currently available literature describing fractures of condylar replacements, both cemented and uncemented. Predisposing factors include varus deformity either pre or post operatively. The mechanism of failure is thought to be failure of the infiltration of bone into the replacement. This is often due to polyethylene wear or metallosis causing abnormal tissue reaction with or without osteolysis. We present the case of a fractured Press Fit Condylar (PFC) cemented implant (DePuy, Johnson&Johnson, Raynham, Massachusettes, USA) affecting the medial condyle. To our knowledge this is only the third reported case of fracture in a PFC implant, and the first in a cemented PFC implant. Our patient was a 64 year old male who presented with unresolving knee pain post total knee arthroplasty, caused by fatigue fracture of the medial condyle of the femoral component. This was identified as loosening on plain radiographs and replaced with a revision prosthesis with a good post operative result. Given our aging population and with the increase of joint arthroplasty, this case sheds light on a potentially under recognised and increasingly important cause of knee pain following arthroplasty


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 38 - 38
1 Jun 2023
Hrycaiczuk A Biddlestone J Rooney B Mahendra A Fairbairn N Jamal B
Full Access

Introduction. A significant burden of disease exists with respect to critical sized bone defects; outcomes are unpredictable and often poor. There is no absolute agreement on what constitutes a “critically-sized” bone defect however it is widely considered as one that would not heal spontaneously despite surgical stabilisation, thus requiring re-operation. The aetiology of such defects is varied. High-energy trauma with soft tissue loss and periosteal stripping, bone infection and tumour resection all require extensive debridement and the critical-sized defects generated require careful consideration and strategic management. Current management practice of these defects lacks consensus. Existing literature tells us that tibial defects 25mm or great have a poor natural history; however, there is no universally agreed management strategy and there remains a significant evidence gap. Drawing its origins from musculoskeletal oncology, the Capanna technique describes a hybrid mode of reconstruction. Mass allograft is combined with a vascularised fibula autograft, allowing the patient to benefit from the favourable characteristics of two popular reconstruction techniques. Allograft confers initial mechanical stability with autograft contributing osteogenic, inductive and conductive capacity to encourage union. Secondarily its inherent vascularity affords the construct the ability to withstand deleterious effects of stressors such as infection that may threaten union. The strengths of this hybrid construct we believe can be used within the context of critical-sized bone defects within tibial trauma to the same success as seen within tumour reconstruction. Methodology. Utilising the Capanna technique in trauma requires modification to the original procedure. In tumour surgery pre-operative cross-sectional imaging is a pre-requisite. This allows surgeons to assess margins, plan resections and order allograft to match the defect. In trauma this is not possible. We therefore propose a two-stage approach to address critical-sized tibial defects in open fractures. After initial debridement, external fixation and soft tissue management via a combined orthoplastics approach, CT imaging is performed to assess the defect geometry, with a polymethylmethacrylate (PMMA) spacer placed at index procedure to maintain soft tissue tension, alignment and deliver local antibiotics. Once comfortable that no further debridement is required and the risk of infection is appropriate then 3D printing technology can be used to mill custom jigs. Appropriate tibial allograft is ordered based on CT measurements. A pedicled fibula graft is raised through a lateral approach. The peroneal vessels are mobilised to the tibioperoneal trunk and passed medially into the bone void. The cadaveric bone is prepared using the custom jig on the back table and posterolateral troughs made to allow insertion of the fibula, permitting some hypertrophic expansion. A separate medial incision allows attachment of the custom jig to host tibia allowing for reciprocal cuts to match the allograft. The fibula is implanted into the allograft, ensuring nil tension on the pedicle and, after docking the graft, the hybrid construct is secured with multi-planar locking plates to provide rotational stability. The medial window allows plate placement safely away from the vascular pedicle. Results. We present a 50-year-old healthy male with a Gustilo & Anderson 3B proximal tibial fracture, open posteromedially with associated shear fragment, treated using the Capanna technique. Presenting following a fall climbing additional injuries included a closed ipsilateral calcaneal and medial malleolar fracture, both treated operatively. Our patient underwent reconstruction of his tibia with the above staged technique. Two debridements were carried out due to a 48-hour delay in presentation due to remote geographical location of recovery. Debridements were carried out in accordance with BOAST guidelines; a spanning knee external fixator applied and a small area of skin loss on the proximal medial calf reconstructed with a split thickness skin graft. A revision cement spacer was inserted into the metaphyseal defect measuring 84mm. At definitive surgery the external fixator was removed and graft fixation was extended to include the intra-articular fragments. No intra-operative complications were encountered during surgeries. The patient returned to theatre on day 13 with a medial sided haematoma. 20ml of haemoserous fluid was evacuated, a DAIR procedure performed and antibiotic-loaded bioceramics applied locally. Samples grew Staphylococcus aureus and antibiotic treatment was rationalised to Co-Trimoxazole 960mg BD and Rifampicin 450mg BD. The patient has completed a six-week course of Rifampicin and continues on suppressive Co-Trimoxazole monotherapy until planned metalwork removal. There is no evidence of ongoing active infection and radiological evidence of early union. The patient is independently walking four miles to the gym daily and we believe, thus far, despite accepted complications, we have demonstrated a relative early success. Conclusions. A variety of techniques exist for the management of critical-sized bone defects within the tibia. All of these come with a variety of drawbacks and limitations. Whilst acceptance of a limb length discrepancy is one option, intercalary defects of greater than 5 to 7cm typically require reconstruction. In patients in whom fine wire fixators and distraction osteogenesis are deemed inappropriate, or are unwilling to tolerate the frequent re-operations and potential donor site morbidity of the Masqualet technique, the Capanna technique offers a novel solution. Through using tibial allograft to address the size mismatch between vascularised fibula and tibia, the possible complication of fatigue fracture of an isolated fibula autograft is potentially avoidable in patients who have high functional demands. The Capanna technique has demonstrated satisfactory results within tumour reconstruction. Papers report that by combining the structural strength of allograft with the osteoconductive and osteoinductive properties of a vascularised autograft that limb salvage rates of greater than 80% and union rates of greater than 90% are achievable. If these results can indeed be replicated in the management of critical-sized bone defects in tibial trauma we potentially have a treatment strategy that can excel over the more widely practiced current techniques


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 284 - 284
1 Nov 2002
Walter W Eckardt J Kabo M
Full Access

Aim: To calculate the incidence and timing of metal failure in endoprostheses used for bone tumour reconstructions and to analyse the mode of failure. Methods: A retrospective analysis was performed on 468 endoprostheses with an average follow-up of 50 months. The explanted prostheses were studied to determine the mode of failure and the design and material features that might have contributed to the failure. Results: There were 18 mechanical failures of metal. A total of 19 cases were revised for loosening one of which was noted to have a metal fracture pending at the time of the revision. There were three cases of failure of the coupling between components of modular systems. All of the remaining cases (16) were in the lower limb and these failed by fracture of the metal. The fractures occurred at an average of 92 months. The majority of the fractures that were seen were simple fatigue fractures but in three cases other types of failure were also involved. There were no fatigue fractures in forged cobalt chrome components. Fatigue fracture of the cast cobalt chrome implants could always be attributed to a local stress riser or a local area of high stress due to features of the design. Fatigue fractures of titanium implants were often related to notching. Discussion: The large skeletal defects left by resection of bone tumours can often be reconstructed with endo-prostheses. The mechanical demands on these implants are great resulting in a relatively high incidence of metal failure. Improvements in design and materials can minimise these failures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 65 - 65
1 Jun 2012
Quah C Yeoman MS Cizinauskas A Cooper K König MA McNally D Boszczyk BM
Full Access

Introduction. Lumbar spondylolysis is a fatigue fracture of the pars interarticularis and correlates with Spina Bifida Oculta (SBO) in 67%. Hpothesis. Load is normally transferred across the arch in axial rotation. Bifid arch results in increased strain across the isthmus of the loaded inferior articular process. Aim of investigation. Finite element (FE) analysis of altered load transfer in combined axial rotation and anteroposterior shear in SBO potentially predisposing to fatigue fracture of the pars interarticularis. Methods. FE models of natural and SBO (L5-S1) including ligaments were axially load to 1kN and an axial rotation of 3° applied. Bilateral stresses and strains on intact and SBO lateral inferior lines of the L5 isthmus were assessed and compared. Results. Under 1000N axial load: Maximum von Mises stress observed on left and right lateral inferior lines of L5 isthmus were 0.13 and 0.24 MPa, with maximum equivalent strain values of 1.56 and 2.91 (strain, for natural spine and SBO, respectively. Combined with 3° axial rotation (rotation of spinal processes toward right lateral side): Left lateral L5 isthmus stresses increased to 0.49 and 0.77 MPa for natural spine and SBO, respectively. Right lateral L5 isthmus values increased to 0.67 and 0.95 MPa for natural spine and SBO, respectively. The percentage increase in SBO strains compared to the natural spine on the L5 isthmus were +57.9 and +40.2%. Conclusion. Significant load transfer occurs through the vertebral arch in axial rotation. In SBO this load transfer is lost and mechanical demand on the isthmus is significantly increased. Strain increases across the L5 isthmus in axial rotation by +40.2% to +57.9% compared to normal and may predispose to fatigue fracture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 40 - 40
1 Feb 2021
Neto M Hall D Frisch N Fischer A Jacobs J Pourzal R
Full Access

Ti-6Al-4V is the most common alloy used for orthopaedic implants. Its popularity is due to low density, superior corrosion resistance, good osseointegration and lower elastic modulus when compared to other commonly used alloys such as CoCrMo and stainless steel. In fact, the use of Ti64 has even further increased lately since recent controversy around adverse local tissue reactions and implant failure related to taper corrosion of CoCrMo alloy. However, implants made from Ti64 can fail in some cases due to fatigue fracture, sometimes related to oxide induced stress corrosion cracking or hydrogen embrittlement, or preferential corrosion of the beta phase. Studies performed with Ti-6Al-4V do often not consider that the alloy itself may have a range of characteristics that can vary and could significantly impact the implant properties. These variations are related to the material microstructure which depends not only on chemical composition, but also the manufacturing process and subsequent heat treatments. Different microstructures can occur in implants made form wrought alloys, cast alloys, and more recently, additive manufactured (AM) alloys. Implant alloy microstructure drives mechanical and electrochemical properties. Therefore, this study aims to analyse the microstructure of Ti-6Al-4V alloy of additive manufactured and conventional retrieved orthopaedic implants such as acetabular cups, tibial trays, femoral stem and modular neck by means of electron backscatter diffraction (EBSD). Microstructural features of interest include grains shape and size, phase content and distribution, preferred grain orientation (texture), alloying elements distribution (homogenization) and presence of impurities. Additionally, we demonstrate the direct impact of different microstructural features on hardness. We analysed 17 conventional devices from 6 different manufacturers, 3 additive manufactured devices from 2 different manufactures and 1 control alloy (bar stock). The preliminary results showed that even though all implants have the same chemical composition, their microstructural characteristics vary broadly. Ti64 microstructure of conventional alloys could be categorized in 3 groups: equiaxed grains alloys (Fine and Coarse), bimodal alloys and dendritic alloys. The additive manufactured implants were classified in an additional group on its own which consists of a needle-like microstructures - similar to Widmanstätten patterns, Fig. 1, with a network of β phase along α phase grains. Furthermore, AM alloys exhibited residual grain boundaries from the original β grains from the early stage of the solidification process, Fig. 2. These characteristics may have implication on the fatigue and corrosion behaviour. In addition, it we observed inhomogeneous alloying element distribution in some cases, Fig. 3, especially for the additive manufactured alloys, which also may have consequences on corrosion behaviour. Finally, the hardness testing revealed that the implants with large grain size, such as AM alloys, exhibit low hardness values, as expected, but also the amount of beta phase correlated positively with lower hardness. Grain aspect ratio and beta phase grain size correlated positively with higher hardness. In summary, we found that common Ti64 implants can exhibit a broad variety of different alloy microstructures and the advent of AM alloys introduces an entirely new category. It is imperative to determine the ideal microstructure for specific applications


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 256 - 256
1 Mar 2004
Majò J Gracia I Escribà I Doncel A
Full Access

Aims: The knee is the commonest articular location in osteosarcoma (OS). We study the complications in limb salvage due to OS in knee reconstructions. Methods: In our series of 107 OS for the period 1983–1998, limb salvage procedure was possible in 78 cases and the amputation was necessary in 29 patients. The Knee reconstruction includes 62 cases (39 due to femur OS and 23 due to tibia OS). All cases were treated with preoperative and postoperative chemotherapy. The average follow-up was 87.4 months with a range of 55 to 183 months. Results: Complications in re-constructions due to femur OS:. – Local recurrence 2/39 (5.13%). – Infection 2/39 (5.13%). – Fatigue fracture (7.6%) Complications in tibia re-constructions:. – Local recurrences 3/23 (13%). – Infection 5/23 (21.7%). Patellar tendon tear off 2/23 (8.7%). Fatigue fracture 1/23 (4.35%). Conclusions: The rate of complications in tibia is higher than in femur. The infections in tibia limb salvage are related to skin coverage. The local recurrence in tibia is related to anatomical problems to achieve wide resections


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 285 - 285
1 May 2006
Murphy M Gul R Fitzpatrick C Byrne G Fitzpatrick D McCormack D
Full Access

Many pedicle screw instrumentation systems are currently available to the spine surgeon. Each system has its unique characteristics. It is important for the surgeon to understand the differences in these pedicle screw systems. 1. Following the introduction of a new spinal instrumentation set to our clinical practice we encountered two cases of pedicle screw breakage. We thus decided to investigate the mechanism of this screw failure (screw A) in these particular cases and to compare the biomechanical properties, through independent analysis, of a variety of pedicle screws from different manufacturers. Samples of the broken pedicle screws were retrieved at surgery. Surface analysis of the fracture area using the electron microscope, demonstrated features consistent with fatigue fracture. Pedicle screws of comparable size from a variety of manufacturers were gathered for independent analysis. Shadowgraph analysis was performed of each screw allowing multiple measurements to be taken of the screw’s geometry. Using this data stress concentration factors were determined demonstrating screw A to have larger values than all the other screws ranging from 2 – 3.6 times the nominal stress. The smaller teeth of screw A, spaced further apart than in the other screws, means that the large proportion of the load which would be carried by the threads is distributed over a smaller area resulting in higher stresses in the threads. The sharp corner at the root of the thread, acting as a stress concentrator, would become the focal point of these high stresses, and magnify them by 2 to 3.6 times. These increased stresses most likely account for an increased susceptibility to fatigue fracture seen in screw A. In conclusion it is important to be careful with the introduction and use of new pedicle screw materials and designs, that all the standard biomechanical testing has been performed to a satisfactory standard. Knowing the physical characteristics of the available pedicle screw instrumentation systems may allow the choice of pedicle screw best suited for a given clinical situation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 4 - 4
1 Nov 2016
Seitz W
Full Access

Cement fixation of the glenoid implants in total shoulder arthroplasty has been the norm since the procedure has existed. Yet, an unacceptably high rate of lucent lines, representing prosthetic loosening, and a high rate of resultant failure of fixation of these implants continues to be the single most common cause for revision surgery in total shoulder arthroplasty. Dissatisfaction with a higher than acceptable rate of lucent lines, cement fixation of the glenoid component has led us to evaluate and employ an implant anchored into the glenoid vault with a woven tantalum (trabecular metal) fixation stem. We have employed this implant in patients with healthy bone stock with a minimum 2-year follow-up in well over 100 cases with only one revision performed in a first generation implant due to fatigue fracture. No cases have demonstrated lucency or loosening. The procedure does require meticulous attention to detail to ensure precise surface and glenoid vault preparation providing complete intraosseous seating of the trabecular metal anchor and flush apposition and support of the polyethylene surface upon the face of the glenoid. This process has reduced surgical preparation time as well as time required for cement setting by an average of 20 minutes per case


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims

Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS).

Methods

Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 76 - 76
1 May 2017
De Pasquale D Beraudi A Stea S Baleani M Guerra G Toni A
Full Access

Modular femoral stems for total hip arthroplasty (THA) were introduced to allow additional options for surgeons in controlling leg lengths, offset, and implant stability. This option is widely used in Region Emilia Romagna, Italy, where the study was conducted, having a modular neck stem nearly 35% of primary THA in 2013. Great majority of modular neck is made of Titanium alloy. The study was designed as a retrospective descriptive case series of 67 hips in patients who underwent revision of a THA. All had a Titanium modular neck. In 44 cases revision was due to breakage of the neck, in the remaining 23 it was due to different reasons unrelated to modular neck such as bone fracture, breakage of a ceramic component, cup loosening. Mean follow up was 3.5 yrs. For all patients excised capsule and surrounding tissue were graded for presence of necrosis, inflammatory exudate, lymphocytes, and wear particles using light microscopy of routine paraffin sections stained with hematoxylin and eosin. The retrieved modular neck-body and head-neck junctions were examined for evidence of fretting and corrosion. For some patient dosage of circulating Titanium was obtained. Approval was obtained from institutional review board. It resulted that a variable amount of wear was observed in the first group of patients, with no evidence of lymphocytic reaction, but with variable notes of necrosis. Broken necks showed different patterns of damage, with different degree of corrosion, beside the fatigue fracture. In the second group wear was less evident or absent and negativity of lymphocyte reaction was substantially confirmed. Circulating Titanium ions were one order of magnitude higher in first group (mean 35 micrograms /litre). It can be concluded that fracture of Titanium modular necks occurs progressively, wear does not induce lymphocytic reaction and circulating ions increase. Level of Evidence. III retrospective, comparative study. Acknowledgments. The research was funded by Ministry of Health, grant ‘Early diagnosis of pending failure…’RF 20091472961


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 7 - 7
1 May 2016
Griffiths J Abouel-Enin S Yates P Carey-Smith R Quaye M Latham J
Full Access

In a society whereby the incidence of obesity is increasing and medico-legal implications of treatment failure are more frequently ending with the consulting doctor, clarity is required as to any restrictions placed on common orthopaedic implants by manufacturing companies. The aim of this study was to identify any restrictions placed on the commonly used femoral stem implants in total hip replacement (THR) surgery, by the manufacturers, based on patient weight. The United Kingdom (UK) National Joint Registry (NJR) was used to identify the five most commonly used cemented and uncemented femoral stem implants during 2012. The manufacturing companies responsible for these implants were asked to provide details of any weight restrictions placed on these implants. The Corail size 6 stem is the only implant to have a weight restriction (60Kg). All other stems, both cemented and uncemented, were free of any restrictions. Fatigue fracture of the femoral stem has been well documented in the literature, particularly involving the high nitrogen stainless steel cemented femoral stems and to a lesser extent the cemented cobalt chrome and uncemented femoral stems. In all cases excessive patient weight leading to increased cantilever bending of the femoral stem was thought to be a major factor contributing to the failure mechanism. From the current literature there is clearly an association between excessive patient weight and fatigue failure of the femoral stem. We suggest avoiding, where possible, the insertion of small stems (particularly cemented stems) and large offset stems (particularly those with a modular neck) in overweight patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 38 - 38
1 May 2016
Beraudi A Pasquale D Stea S Baleani M Guerra G Toni A
Full Access

Modular femoral stems for total hip arthroplasty (THA) were introduced to allow additional options for surgeons in controlling leg lengths, offset and implant stability. This option is widely used in our Region, where the study was conducted, having a modular neck stem nearly 35% of primary THA in 2013. Great majority of modular neck is made of Titanium alloy. The study was designed as a retrospective descriptive case series of 67 hips in patients who underwent revision of a THA. All had a Titanium modular neck. In 44 cases revision was due to breakage of the neck, in the remaining 23 it was due to different reasons unrelated to modular neck such as bone fracture, breakage of a ceramic component, cup loosening. Mean follow up was 3.5 yrs. For all patients excised capsule and surrounding tissue were graded for presence of necrosis, inflammatory exudate, lymphocytes, and wear particles using light microscopy of routine paraffin sections stained with hematoxylin and eosin. The retrieved modular neck-body and head-neck junctions were examined for evidence of fretting and corrosion. For some patient dosage of circulating Titanium was obtained. Approval was obtained from institutional review board. It resulted that a variable amount of wear was observed in the first group of patients, with no evidence of lymphocytic reaction, but with variable notes of necrosis. Broken necks showed different patterns of damage, with different degree of corrosion, beside the fatigue fracture. In the second group wear was less evident or absent and negativity of lymphocyte reaction was substantially confirmed. Circulating Titanium ions were one order of magnitude higher in first group (mean 35 micrograms /liter). It can be concluded that fracture of Titanium modular necks occurs progressively, wear does not induce lymphocytic reaction and circulating ions increase


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims

Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.

Methods

After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 10 - 10
1 May 2016
MacDonald D Schachtner J Chen A Cates H Klein G Mont M Kraay M Malkani A Lee G Hamlin B Rimnac C Kurtz S
Full Access

Introduction. Highly crosslinked polyethylene (HXLPE) was clinically introduced approximately a decade and a half ago to reduce polyethylene wear rates and subsequent osteolysis. Clinical and radiographic studies have repeatedly shown increased wear resistance, however concerns of rim oxidation and fatigue fracture remain. Although short to intermediate term retrieval studies of these materials are available, the long-term behavior of these materials remains unclear. Methods. Between 2000 and 2015, 115 1st generation HXLPE acetabular liners implanted for 5 or more years were collected and analyzed as part of an ongoing, multi-institutional orthopaedic implant retrieval program. There were two material cohorts based on thermal processing (annealed (n=45) and remelted (n=70)). Each cohort was stratified into two more cohorts based on implantation time (5 – 10 years and >10 years). For annealed components, the intermediate-term liners (n=30) were implanted on average (±SD) for 7.3 ± 1.7 years while the long-term liners (n=15) were implanted for 11.3 ± 1.8 years. For remelted components, the intermediate-term liners (n=59) were implanted on average (±SD) for 7.2 ± 1.3 years while the long-term liners (n=11) were implanted for 11.3 ± 1.2 years. For each cohort, the predominant revision reasons were loosening, instability, and infection (Figure 1). Short-term liners (in-vivo <5ys) from previous studies were analyzed using the same protocol for use as a reference. For oxidation analysis, thin slices (∼200 μm) were taken from the superior/inferior axis and subsequently boiled in heptane for 6 hours to remove absorbed lipids that may interfere with the oxidation analysis. 3mm line profiles (in 100μm increments) were taken perpendicular to the surface at each region of interest. Oxidation indices were calculated according to ASTM 2102. Penetration was measured directly using a calibrated micrometer (accuracy=0.001mm). Results. The penetration rates for both the annealed and remelted cohorts were low and similar between the two material cohorts (Figure 2). There were several cases of fractured zirconia heads associated with a manufacturer recall that resulted in higher penetration rates. At the bearing and rim surfaces, the annealed liners had higher oxidation indices than the remelted components (p<0.001). For the remelted components, the intermediate-term liners had higher oxidation indices than the short-term liners (p=0.001). For the annealed liners, both the long-term and intermediate-term liners had higher oxidation indices compared with the short-term liners (p=0.007 and 0.001, respectively). Discussion. Thermally treated first generation HXLPEs were introduced to reduce polyethylene wear and prevent oxidative degradation. The results of this study suggest that both thermally treated HXLPEs demonstrate lower penetration rates than conventional polyethylene, however, the resistance to oxidation was formulation dependent. Specifically, the remelted components were more effective at preventing oxidation than the annealed liners. However, despite the lack of measurable free radicals, we were able to observe temporal changes in the oxidation of the remelted liners. Future work will include analysis of long-term 1stgeneration annealed HXLPE to fully assess its performance in the second decade of service


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 239 - 239
1 Jun 2012
Tamaki Y Nakano S Utsunomiya R Nakamura M Chikawa T Shimakawa T Minato A
Full Access

Background. The bearing surface is one of the important factors that affect the longevity of total hip replacement (THR). The ceramic on ceramic bearing decreases the rate of dislocation event and the amount of wear debris. We encountered cases of incomplete seating of the liner with the TriAD acetabular system. Patients and Methods. We examined 25 hips in 24 patients who had undergone total hip replacement by using the TriAD shell with a metal-backed alumina liner. We used the Hardinge approach for performing surgery in all patients. Incomplete seating was judged on the basis of plain anteroposterior and/or oblique radiographs obtained immediately and 3 months after the operation. Result. Six hips (24%) were found to have incomplete seating of the liner. Four cases were confirmed on the basis of plain radiographs obtained in the early postoperative period, and 2 were identified at a follow-up examination conducted more than 3 months postoperatively. All patients showed clinical improvement. Revision surgery was not required to rectify incomplete seating. Conclusions. We agreed with Langdown AJ. et al who reported that this implant design had an elevated rim and that shell deformity upon implantation can cause incomplete seating. Therefore, when using this implant, due care should be taken during implantation of the liner. It is necessary to conduct follow-up examination in patients with incomplete seating of the liner because these patients can have problems such as metallosis, corrosion, fatigue fracture of implants, and implant loosening


Introduction. In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:. manufacturing-variables on as-manufactured UHMWPE;. in vivo time on these initial properties;. identifying important factors in selecting UHMWPE for the hip or knee. Methods. After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals. All retrievals were analyzed for oxidation and trans-vinylene index (TVI) using a Thermo-Scientific iN10 FTIR microscope. Mechanical properties were evaluated for 35 tibial inserts by uniaxial tensile testing using an INSTRON load frame. Cross-link density (n=289) was measured using a previously published gravimetric gel swell technique. Oxidation was reported as maximum ketone oxidation index (KOI) measured for each bearing. TVI was reported as the average of all scans for each material. Cross-link density and mechanical properties were evaluated as a function of both TVI and oxidation. Results. Minimal increase in oxidation was seen in these AO-retrievals, out to almost 7 years in vivo. In contrast, HXL-retrievals showed increasing KOI with time in vivo (annealed-HXL = 0.127/year, remelted-HXL = 0.036/year, p<0.001). HXL oxidation rate was higher in knees (0.091/year) than in hips (0.048/year), p<0.001. Cross-link density (XLD) correlated positively with TVI for both HXL (Pearson's correlation=0.591, p<0.001) and AO (Pearson's correlation=0.598, p<0.001) retrievals. AO-materials had higher TVI for the same or similar XLD than did HXL polyethylene. XLD correlated negatively with KOI for HXL retrievals (Pearson's correlation=−0.447, p<0.001). Mechanical properties varied by material across all materials evaluated, with tensile toughness correlating negatively with increasing TVI (Pearson Correlation=−0.795, p<0.001). Discussion. Irradiation cross-linking has been used effectively to improve wear resistance. Residual free radicals from irradiation are the target of AO-polyethylene, to prevent loss of UHMWPE XLD, resulting from in vivo oxidation of free radicals as seen in HXL retrievals, and toughness, resulting from oxidation or initial remelting. Despite different manufacturing variables, AO-polyethylene retrievals in this cohort had minimal oxidation and no change in XLD or toughness due to oxidation. However, toughness did vary with irradiation dose as did cross-link density. To achieve the same level of cross-linking as HXL-polyethylene required a higher irradiation dose in blended AO-polyethylene. AO-polyethylenes evaluated in this study had toughness that decreased with irradiation dose, but avoided loss of toughness due to remelting. Because AO-polyethylenes did not oxidize, they did not show the decrease of cross-link density, and potential loss of wear resistance, seen in HXL-polyethylene. For any figures or tables, please contact authors directly