Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by
Purpose: The goal of this study was to evaluate the use of
Introduction. Precision error (PE) in
Introduction and Aims: This study evaluated the proximal femoral remodelling associated with three uncemented femoral prostheses of different designs and surface treatments. We hypothesised that less bone loss will occur over time with a titanium implant designed for proximal stress transfer compared to a more rigid stem that produces diaphyseal loading. Method: During total hip arthroplasty (THA), patients were implanted with either: AML cobalt-chrome alloy porous-coated stem (11 patients), Osteonics titanium alloy hydroxyapatite-coated stem (13 patients), or Sulzer titanium alloy hydroxyapatite-coated stem (eight patients). All patients followed the same surgical and post-surgical protocol for THA.
Purpose: Bone remodelling and osteolysis around total hip arthroplasty (THA) is a highly debated subject in the medical literature. Such bone behaviour is poorly understood around femoral stems used in revision THA. The main problem is to obtain an objective assessment of bone remodelling and bone reconstruction over time, reconstruction techniques being very variable. Conventional radiology is insufficient, but
Aim: To compare the difference in periprosthetic bone density between cemented and uncemented total hip replacement at a minimum follow up of 10 years. Patients and methods: We looked at a cohort of 17 patients who have had bilateral total hip replacement with cemented Charnley total hip on one side and uncemented Furlong total hip on the other side between 1984 and 1994 (minimum follow up 10 years). Harris and Oxford hip scores were used to determine the function, SF 36 was used to measure quality of life and
Introduction:
The purpose of this study was to evaluate the long term changes in bone mineral density (BMD) following implantation of a low-modulus composite femoral component designed to closely match the stiffness of the proximal femur and minimize stress shielding. Specifically, we asked: 1) How does BMD in the proximal femur change with time and with Gruen zone location; 2) Does BMD in the proximal femur stabilize after two years of implantation? We retrospectively reviewed a subgroup of sixteen patients who had preoperative and postoperative DEXA scans in an FDA multi-center prospective trial of this composite stem. Five of these sixteen patients returned for long-term DEXA scans at a mean 22.0 years post-op (range 21.2–22.6 years). BMD in the 7 Gruen zones at final follow-up was compared to immediate post-operative and 2-year follow-up values. Percentage change was calculated and change in BMD was plotted against time from immediate post-operative measurements to each subsequent follow-up.Introduction
Methods
Purpose: With appropriate software,
Aseptic loosening is the main reason for total knee arthroplasty (TKA) failure, responsible for more than 25% of the revision procedures, with most of the problems occurring with the tibial component. While early loosening can be attributed to failure of primary fixation, late implant loosening is associated with loss of fixation secondary to bone resorption due to altered physiological load transfer to the tibial bone. Several attempts have been made to investigate these changes in bone load transfer in biomechanical simulations and bone remodeling analyses, which can be useful to provide information on the effect of patient, surgery, or design-related factors. On the other hand, these factors have also been investigated in clinical studies of radiographic changes of bone density following TKA. In this study we made an overview of the knowledge obtained from these clinical studies, which can be used to inform clinical decision making and implant design choices. A literature search was performed to identify clinical follow-up studies that monitored peri-prosthetic bone changes following TKA. Within these studies, effects of the following parameters on bone density changes were investigated: post-operative time, region of interest, alignment, body weight, systemic osteoporosis, implant design and cementation. Moreover, we investigated the effect of bone density loss on implant survival. Results A total of 19 studies was included in this overview, with a number of included patients ranging from 12 to 7,760. Most studies used DEXA (n=16), while a few studies performed analyses on calibrated digital radiographs (n=2), or computed tomography (n=1). Postoperative follow-up varied from 9 months to 10 years. Studies consistently report the largest bone density reduction within the first postoperative year. Bone loss is mainly seen in the medial region. This has been attributed to the change in alignment following surgery, during which often the pre-operative varus knee is corrected to a more physiological alignment, resulting in a load shift towards the lateral compartment. Measurements in unoperated contralateral legs were performed in 3 cases, and two studies performed standardized DEXA measurements to provide information on systemic osteoporosis. While on the short term no changes were observed, significant negative correlations have been found between severity of osteoporosis and peri-prosthetic bone density. No clear effects of bodyweight and cementation on bone loss have been identified. Although some studies do find differences between implant types, the variation in the data makes it difficult to draw general conclusions from these findings. Several studies reported no effect of bone loss on implant migration. In another study, a medial collapse was associated with a medial increase in density, suggesting that altered loading and increased stresses are responsible for both bone formation and the overload leading to collapse.Introduction
Methods
Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and
Aims. Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related biomarkers between patients treated and untreated for osteoporosis. Methods. This single-centre retrospective study included 398 hip joints of patients who underwent THA. Using medical records, we examined preoperative bone mineral density measures of the hip and lumbar spine using
Aims. Assessment of bone mineral density (BMD) with
Aims. Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems. Methods. In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis,
Aims. The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). Methods. A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR),
Aims. The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. Methods. The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by
Objectives. Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. Methods. A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and
Femoral stem design affects periprosthetic bone mineral density (BMD), which may impact long term survival of cementless implants in total hip arthroplasty (THA). The aim of this study was to examine proximal femoral BMD in three morphologically different uncemented femoral stems designs to investigate whether one particular design resulted in improved preservation of BMD. 119 patients were randomized to receive either a proximally coated dual taper wedge stem, a proximally coated anatomic stem or a fully coated collarless triple tapered stem.
Femoral stem design affects periprosthetic bone mineral density (BMD), which may impact long term survival of cementless implants in total hip arthroplasty (THA). The aim of this study was to examine proximal femoral BMD in three morphologically different uncemented femoral stems designs to investigate whether one particular design resulted in improved preservation of BMDMethods: 119 patients were randomised to receive either a proximally coated dual taper wedge stem, a proximally coated anatomic stem or a fully coated collarless triple tapered stem. All surgeries were performed via the posterior approach with mobilization on the day of surgery.