Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional
Wear of ultra-high molecular weight polyethylene (UHMWP) acetabular cups is a well-known cause of osteolysis and loosening of the components. Improvement of the wear resistance of UHMWP could extend the clinical life of total hip arthroplasty (THA). Chemical cross-linking in acetylene with gamma radiation is a cheap and effective way of increasing wear resistance of UHMWP. This study is a report on 263 patients (123 males and 140 females) on whom Dr Weber performed THA between 1977 and 1984, using the Pretoria (Grobbelaar) monobloc stainless steel hip with 30-mm metal head. There were 96 patients (107 prostheses) available for follow-up at a mean of 18.3 years, with 89 surviving prosthesis in 79 patients (83.2%). We collected complete sets of radiographs of 54 patients (mean age 71.4 years) for a radiological survey in 1999. In 41 patients (76%) we found no wear. The mean age of these patients was 72 years. Wear was noted in the other 13 patients (24%), whose mean age was 75 years. The mean follow-up time was 16 years (8 to 23). The mean magnification in the radiological study was 18%. Mean wear for the total group was 1.29 mm and mean annual wear 0.17 mm. A similar analysis performed on a group of 64 of Dr Grobbelaar’s patients at 15.5 year mean follow-up shows remarkable similarity, with mean wear of 0.172 mm for a group of 64 patients and annual wear 0.11 mm. Dr Oonishi of Japan, who has conducted the only other long-term follow-up, found similarly promising results.
The prevalent cause of implant failure after total joint replacement is aseptic loosening caused by wear debris. Improvement of the wear behaviour of the articulating bearing between the cup and femoral head is essential for increased survival rate of artificial hip joints.
Introduction. We have previously demonstrated that peroxide crosslinked vitamin E-blended UHMWPE maintains its clinically-required wear and mechanical properties [1]. This material can potentially be used as an irradiation-free bearing surface for TJA. However, using organic peroxides in medical devices requires a thorough examination of tissues in contact with the implant. For this study we crosslinked polyethylene using five times the needed concentration of peroxide (2,5-Dimethyl-2,5-di(t-butylperoxy)-hexyne-3 or P130), followed by implantation to determine implant biocompatibility, and pre and post implant peroxide residual contents. Methods. The study was performed after institutional approval following ISO standard 10993–6. Study groups: not crosslinked (0.2 (1050) VE), crosslinked (0.2 VE (1050)/5% P130) and crosslinked-high temperature melted (HTM) (0.2 VE (1050)/5% P130). Materials were blended and consolidated, machined (2.5 diameter × 2.5 cm height), sterilized and implanted in the dorsum New Zealand white rabbits. Pre and post implantation FTIR was performed. Two samples were implanted in each rabbit; n=6 samples were included for each group. After 4 weeks, samples were explanted, analyzed using FTIR, and subcutaneous tissues processed for histological analysis. Results. FTIR absorbances at 914cm. −1. , 1169cm. −1. , and the OH absorbance at 3450cm. −1. showed differences between materials (Fig 1A). There was a significant increase in the absorbance at 914 for the non-crosslinked and crosslinked samples after explantation (p = 2.77E–17, p = 4.22E–23, Fig 1B). There was a significant decrease in all peroxide related absorbances after explantation for the crosslinked and HTM samples (p < 0.05, Fig 1B). Before implantation, these absorbances were significantly higher in the crosslinked and crosslinked/HTM samples than those in the non crosslinked sample (p<0.05, Fig 2A). Peroxide related absorbances of the crosslinked sample were also significantly higher than those of the crosslinked/HTM sample (p<0.05, Fig 2A). After explantation, the crosslinked samples had significantly higher absorbances than both the non crosslinked and crosslinked/HTM samples (p < 0.05, Fig 2A). All peroxide related absorbances of the crosslinked/HTM samples were significantly higher than those of the non crosslinked sample (p < 0.05, Fig 2A). The non crosslinked sample showed no significant differential between these absorbances at implantation and after retrieval. The crosslinked sample had the largest differential between the total peak absorbances before implantation and retrieval at 914cm. −1. The crosslinked/HTM samples had the largest differential between the total peak absorbances before and after implantation for both 1169cm. −1. and the OH absorbances (Fig 2B). All explants were recovered after four weeks in vivo (Fig 3A). No difference was found in the histological analysis of the tissue characterized by a synovial-like lining with signs of fibrosis around the implants (Fig 3B). Discussion. The main challenge of this study was identifying pre and postoperative implant peroxide residual peaks via FTIR. We wanted to ensure that peroxide was present in implants before implantation, to ensure their elution into tissues. Conclusions. Peroxide crosslinked polyethylene stabilized with vitamin E can potentially be used as an alternate bearing surface. Irradiation-free processing could result in cost-effectiveness and more accurate
Wear of ultra-high molecular weight polyethylene (UHMWPE) is a major factor that affects longevity of the total joint replacement. In total hips,
This study investigates the relationship between the quality of the arthroplasty and the radiological appearance of the interface. Of special interest is the prognostic value of sustained stability and of improvement in the interface, a phenomenon we have not previously seen. At 1 week and at 6 and 24 months postoperatively, we assessed radiographs of 20 randomly selected patients in whom cross-linked polyethylene cups had been implanted. We classified them into three stages: in stage 0 there was no interface in any zone, in stage I less than 2 mm and in stage II more than 2 mm. This was not a comparative study, but an important feature was the sustainment and/or improvement of the interface. In 16 patients a complete ‘white-out’ of interfaces in postoperative x-rays was sustained for the duration of the study. In three patients imperfect postoperative interfaces clearly improved. In only one patient, who had developed infection, was there deterioration. Widening was seen only in cases of gross mechanical failure or sepsis. We postulate that
Purpose.
The most frequent indication for revision surgery in total hip arthroplasty (THA) is aseptic loosening. Aseptic loosening is associated with polyethylene liner wear, and wear may be reduced by using vitamin E-doped liners. The primary objective of this study was to compare proximal femoral head penetration into the liner between a) two cross-linked polyethylene (XLPE) liners (vitamin E-doped (vE-PE)) versus standard XLPE liners, and b) two modular femoral head diameters (32 mm and 36 mm). Patients scheduled for a THA were randomized to receive a vE-PE or XLPE liner with a 32 mm or 36 mm metal head (four intervention groups in a 2 × 2 factorial design). Head penetration and acetabular component migration were measured using radiostereometric analysis at baseline, three, 12, 24, and 60 months postoperatively. The Harris Hip Score, University of California, Los Angeles (UCLA) Activity Score, EuroQol five-dimension questionnaire (EQ-5D), and 36-Item Short-Form Health Survey questionnaire (SF-36) were assessed at baseline, three, 12, 36, and 60 months.Aims
Methods