Advertisement for orthosearch.org.uk
Results 1 - 20 of 135
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 105 - 105
1 Nov 2018
Wu Z Korntner S Mullen A Skoufos I Tzora A Zeugolis D
Full Access

Porcine and fish by-products in particular are rich sources for collagen, which is the main component of the extracellular matrix (ECM). Although there are studies investigating different collagen derived from various tissue sources for the purpose of creating biomaterials, the comparison of biophysical, biochemical and biological properties of type II collagen isolated from cartilaginous tissues has yet to be assessed. In addition, it has been shown from previous studies that sex steroid hormones affect the collagen content in male and female animals, herein, type II collagens from male and female porcine cartilage were assessed in order to investigate gender effects on the property of collagen scaffolds. Moreover, type II collagen has a supportive role in articular cartilage in the knee joint. Therefore, the aim is to assess the properties of type II collagen scaffolds as a function of species, tissue and gender for cartilage regeneration. Type II collagen was extracted from male and female porcine trachea, auricular, articular cartilage and cartilaginous fish through acid-pepsin digestion at 4°C. SDS-PAGE was conducted to confirm the purity of extracted collagen. Collagen sponges were created via freeze-drying. Scaffold structure and pore size were evaluated by scanning electron microscopy (SEM). Thermal stability was assessed by differential scanning calorimetry (DSC). Sponges were seeded with human adipose derived stem cells to assess chondro-inductive potential of collagen sponges after 7, 14 and 21 days of culture. In conclusion, collagen sponges support the proliferation and differentiation of human adipose derived stem cells to different extents


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims. This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Methods. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA). Results. Cartilage degeneration of the humeral head was associated with the histological presentation of: 1) pannus overgrowing the cartilage surface; 2) pores in the subchondral bone plate; and 3) chondrocyte clusters in OmA patients. In contrast, hyperplasia of the synovial lining layer was revealed as a significant indicator of inflammatory processes predominantly in CTA. The abundancy of collagen I, collagen II, and the C1,2C neoepitope correlated significantly with the histopathological degeneration of humeral head cartilage. No evidence for differences in MMP levels between OmA and CTA patients was found. Conclusion. This study provides a comprehensive histological characterization of humeral cartilage and synovial tissue within the glenohumeral joint, both in normal and diseased states. It highlights synovitis and pannus formation as histopathological hallmarks of OmA and CTA, indicating their roles as drivers of joint inflammation and cartilage degradation, and as targets for therapeutic strategies such as rotator cuff reconstruction and synovectomy. Cite this article: Bone Joint Res 2024;13(10):596–610


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 1 - 1
1 Dec 2020
Gögele CL Kerling V Lenhart A Wiltzsch S Schäfer-Eckart K Minnich B Weiger TM Schulze-Tanzil G
Full Access

Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past, bioactive glass scaffolds have been developed for bone replacement and some of these variants have also been colonized with chondrocytes. However, the hydroxylapaptite phase that is usually formed in bioglass scaffolds is not very suitable for cartilage formation (chondrogenesis). This interdisciplinary project was undertaken to develop a novel slowly degrading bioactive glass scaffold tailored for cartilage repair by resembling the native extracellular cartilage matrix (ECM) in structure and surface properties. When colonized with articular chondrocytes, the composition and topology of the scaffolds should support cell adherence, proliferation and ECM synthesis as a prerequisite for chondrogenesis in the scaffold. To study cell growth in the scaffold, the scaffolds were colonized with human mesenchymal stromal cells (hMSCs) and primary porcine articular chondrocytes (pACs) (27,777.8 cells per mm. 3. ) for 7 – 35 d in a rotatory device. Cell survival in the scaffold was determined by vitality assay. Scanning electron microscopy (SEM) visualized cell ultramorphology and direct interaction of hMSCs and pACs with the bioglass surface. Cell proliferation was detected by CyQuant assay. Subsequently, the production of sulphated glycosaminoglycans (sGAGs) typical for chondrogenic differentiation was depicted by Alcian blue staining and quantified by dimethylmethylene blue assay assay. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of cartilage-specific aggrecan, Sox9, collagen type II and dedifferentiation-associated collagen type I. To demonstrate the ECM-protein synthesis of the cells, the production of collagen type II and type I was determined by immunolabelling. The bioactive glass scaffold remained stable over the whole observation time and allowed the survival of hMSCs and pACs for 35 days in culture. The SEM analyses revealed an intimate cell-biomaterial interaction for both cell types showing cell spreading, formation of numerous filopodia and ECM deposition. Both cell types revealed initial proliferation, decreasing after 14 days and becoming elevated again after 21 days. hMSCs formed cell clusters, whereas pACs showed an even distribution. Both cell types filled more and more the pores of the scaffold. The relative gene expression of cartilage-specific markers could be proven for hMSCs and pACs. Cell associated sGAGs deposition could be demonstrated by Alcian blue staining and sGAGs were elevated in the beginning and end of the culturing period. While the production of collagen type II could be observed with both cell types, the synthesis of aggrecan could not be detected in scaffolds seeded with hMSCs. hMSCs and pACs adhered, spread and survived on the novel bioactive glass scaffolds and exhibited a chondrocytic phenotype


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 41 - 41
1 Nov 2021
Hammersen T Zietzschmann S Richter W
Full Access

Introduction and Objective. Current cartilage repair strategies lack adequate tissue integration capacity and often present mechanical failure at the graft-to-host tissue junction. The design of multilayered osteochondral tissue engineering (TE) constructs is an attractive approach to overcome these problems. However, calcium ion-release from resorbable bone-replacement materials was suggested to compromise chondrogenic differentiation of adjacent cartilage tissue and it is unclear whether articular chondrocytes (AC) or mesenchymal stroma cells (MSC) are more sensitive to such conditions. Aim of the study was to compare how elevated calcium levels affect cartilage matrix production during re-differentiation of AC versus chondrogenic differentiation of MSC. The results of this study will help to identify the ideal cell source for growth of neocartilage adjacent to a calcified bone replacement material for design of multilayered osteochondral TE approaches. Materials and Methods. Expanded human AC and MSC (6–12 donors per group) were seeded in collagen type I/III scaffolds and cultured under standard chondrogenic conditions at control (1.8mM) or elevated (8.0mM) CaCl2 for 35 days. Proteoglycan and collagen production were assessed via radiolabel-incorporation, ELISA, qPCR and Western blotting. Differences between groups or cell types were calculated using the non-parametric Wilcoxon or Mann-Whitney U test, respectively, with p < 0.05 considered significant. Results. Elevated calcium significantly reduced GAG synthesis (63% of control, p=0.04) and chondrogenic marker expression of AC, lowering the GAG/DNA content (47% of control, p=0.004) and collagen type II deposition (24% of control, p=0.05) of neocartilage compared to control conditions. Opposite, at elevated calcium levels MSC-derived chondrocytes significantly increased GAG synthesis (130% of control, p=0.02) and collagen type II content (160% of control, p=0.03) of cartilage compared to control tissue. Chondrogenic and hypertrophic marker expression was insensitive to calcium levels in MSC-derived chondrocytes. As a result, maturation under elevated calcium allowed for a significantly higher GAG/DNA content in MSC-derived samples compared to AC constructs, although under control conditions both groups developed similarly. Conclusions. AC and MSC showed an opposite reaction to elevation of calcium levels regarding cartilage matrix production and we propose MSC as a preferred cell source to grow chondrocytes in vicinity to calcified bone replacement materials. Since MSC remained prone to hypertrophy under elevated calcium, trizonal cartilage TE constructs, where an AC-layer is separated from the bone replacement phase by an intermediate layer of MSC appear as an ideal design for multilayered osteochondral TE with respect to calcium sensitivity of cells and protection of the upper cartilage layer from hypertrophy


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims. Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67. phox. was involved in suramin-enhanced chondrocyte phenotype maintenance. Results. Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67. phox. ) activity and membrane translocation. Overexpression of p67. phox. but not p67. phox. AD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67. phox. with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67. phox. -induced COL2A1 and ACAN expression was significantly inhibited. Conclusion. Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67. phox. activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 65 - 65
1 Apr 2018
Pattappa G Hofmeister I Zellner J Johnstone B Docheva D Angele P
Full Access

Osteoarthritis is a degenerative disease that results in changes in cartilage extracellular matrix. In vitro studies have shown that IL-1β inhibits cartilage formation in chondrocytes or MSCs undergoing chondrogenesis. In vivo, articular chondrocytes and bone marrow reside under hypoxic or physioxic environment (1–5% oxygen) and previous investigations have shown an increase in cartilage matrix proteins and reduced hypertrophy for MSC chondrogenesis, especially for MSCs expanded and differentiated under physioxia. Our hypothesis was that physioxic preconditioning reduces the effects of IL-1β inhibited MSC chondrogenesis. Methods. Human MSCs (Male donors; aged 18–60 years, n = 6) were isolated from bone marrow and expanded for one passage and split into hyperoxic and physioxic MSC cultures, the latter conditions were isolated and expanded using a hypoxia controlled incubator. MSCs with or without physioxic preconditioning were aliquoted into wells of a 96-well cell culture plate in the presence of 10ng/ml TGF-β. 1. or in combination with either 0.1 or 0.5ng/ml IL-1ß and centrifuged to form pellets. Pellets were then differentiated under their isolation conditions. Pellets removed from culture on days 7, 14 and 21, were evaluated for wet weight, histological (DMMB staining, collagen type I, II, MMP-13 and TGF-β receptor II) and collagen type II ELISA analysis. Results. Preconditioned MSCs demonstrated an enhanced collagen type II and GAG production undergoing chondrogenesis compared to hyperoxic pellets. In the presence of IL-1β, preconditioned MSCs reduced the inhibitory effect of IL-1ß compared to the equivalent conditions under hyperoxic, whereby there was a significant increase in wet weight, GAG and collagen type II production (p < 0.05). Furthermore, preconditioning MSCs had reduced collagen type X expression compared to hyperoxic cultures. Discussion. Preconditioned MSCs had enhanced matrix formation compared to hyperoxic cultures. In the presence of IL-1ß, preconditioned MSCs and physioxic differentiation reduced the inhibitory effects of IL-1ß. This may be related to restoration of TGF-ß receptor II expression (anabolic effect) and reduced expression of catabolic enzyme, MMP-13. The latter enzyme is also involved in hypertrophy and so physioxia helps to partially restore articular cartilage phenotype


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 64 - 64
1 Mar 2021
Korntner S Pieri A Pugliese ZWE Zeugolis D
Full Access

The fibrocartilaginous enthesis displays a complex interface between two mechanically dissimilar tissues, namely tendon and bone. This graded transition zone consists of parallel collagen type I fibres arising from the tendon and inserting into bone across zones of fibrocartilage with aligned collagen type I and collagen type II fibres and mineralised fibrocartilage. Due the high stress concentrations arising at the interface, entheses are prone to traumatic and chronic overuse injuries such as rotator cuff and anterior cruciate ligament (ACL) tears. Treatment strategies range from surgical reattachment for complete tears and conservative treatments (physiotherapy, anti-inflammatory drugs) in chronic inflammatory conditions. Generally, the native tissue architecture is not re-established and mechanically inferior scar tissue is formed. Current interfacial tissue engineering approaches pose scaffold-associated drawbacks and limitations, such as foreign body response. Using a thermo-responsive electrospun scaffold that provides architectural signals similar to native tissues and can be removed prior to implantation, we aim to develop an ECM-rich, cell-based implant for tendon-enthesis regeneration. Alcian blue staining revealed highest sGAG deposition in cell (human adipose derived stem cells) sheets grown on random electrospun fibres and lowest sGAG deposition in collagen type I sponges. Cells did not show an equal distribution throughout the collagen type II scaffolds but tended to form localised aggregates. Thermo-responsive electrospun fibres with random and aligned fibre orientation provided an adequate three-dimensional environment for chondrogenic differentiation of multilayer hADSC-sheets shown by high ECM-production, especially high sGAG deposition. Chondrogenic cell sheets showed increased expression of SOX9, COL2A1, COL1A1, COMP and ACAN after 7 days of chondrogenic induction when compared to pellet culture. Anisotropic fibres enabled the generation of aligned chondrogenic cell sheets, shown by cell and collagen fibre alignment. Thermoresponsive electrospun fibres showed high chondro-inductivity due to their three-dimensionality and therefore pose a promising tool for the generation of scaffold-free multilayer constructs for tendon-enthesis repair within short culture periods. Aligned chondrogenic cell sheets mimic the zonal orientation of the native enthesis as the fibrocartilaginous zone exhibits high collagen alignment


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 58 - 58
1 Mar 2005
Facchini A
Full Access

Autologous chondrocyte transplantation is a widely used technique for the treatment of cartilage lesions. This therapeutic strategy has been recently improved by the use of biocompatible scaffolds which allow a better fixation of the cells inside the defect together with the maintenance of their original phenotype. We have recently reported that human chondrocytes can efficiently grow on a hyaluronan acid derivative biomaterial (Hyaff-11, Fidia Advanced Biopolymers, Abano Terme, Italy) and are able to express and produce collagen type II and proteoglycans, molecules expressed by differentiated cells (Grigolo et al. Biomaterials 2002). However, from the histological evaluations of the grafted tissues there is not always evidence of hyaline cartilage neo-formation even in presence of good clinical symptoms. Only few studies deals with cellular, and biochemical processes that occur during the remodeling of the graft tissue after transplantation in humans. Biopsy samples harvested from the graft have been examined using a panel of specific antibodies. It was found that cell transplantation is followed not only by a process of cartilage repair but in some cases also by a regeneration achieved through the turnover of the initial fibrocartilagineous tissue via enzymatic degradation and synthesis of newly formed collagen type II. Therefore, we examined the expression of genes encoding extracellular matrix proteins and regulatory factors essential for cell differentiation in human cartilage biopsies of patients who underwent autologous chondrocyte transplantation. Human cartilage biopsies of patients treated by autologous chondrocyte transplantation and from a multi-organ donor were used. A Real-Time RT-PCR analysis was performed in isolated chondrocytes to evaluate the expression of collagen type I, II, X, aggrecan, cathepsin B, early growth response protein-1 (Egr-1) and Sry-type high-mobility-group box transcription factor-9 (Sox-9) mRNAs. Immunohistochemical analysis for ECM proteins and regulatory proteins was carried out on paraffin embedded sections. Real-time RT-PCR analysis showed that collagen type I mRNA was expressed in all the samples evaluated while collagen type II was present even if at lower levels compared to control. Collagen type X messenger was undetectable. Aggrecan mRNA was present in all the samples at lower levels compared to donor. Cathepsin B messenger was higher in the samples compared to control. Egr-1 and Sox-9 mRNAs were expressed at lower levels compared to donor. The immunohistochemical analysis showed a slight positivity for collagen type I in all the sections. Collagen type II was found in all the samples evaluated with a positivity confined inside the cells, while the control displayed a positivity which was diffuse in the ECM. Cathepsin B was slightly positive in all the samples while the control was negative. Egr-1 protein was particularly evident in the areas negative for collagen type II. Sox-9 was positive in all the samples, with evident localization in the superficial layer. Our results provide evidence that the remodelling of the graft tissue after autologous chondrocyte transplantation is regulated by a sophisticated gene expression machinery control addressed to new cartilage formation


Bone & Joint Research
Vol. 10, Issue 7 | Pages 459 - 466
28 Jul 2021
Yang J Zhou Y Liang X Jing B Zhao Z

Aims. Osteoarthritis (OA) is characterized by persistent destruction of articular cartilage. It has been found that microRNAs (miRNAs) are closely related to the occurrence and development of OA. The purpose of the present study was to investigate the mechanism of miR-486 in the development and progression of OA. Methods. The expression levels of miR-486 in cartilage were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN), matrix metalloproteinase (MMP)-13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) in SW1353 cells at both messenger RNA (mRNA) and protein levels was determined by qRT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA). Double luciferase reporter gene assay, qRT-PCR, and western blot assay were used to determine whether silencing information regulator 6 (SIRT6) was involved in miR-486 induction of chondrocyte-like cells to a more catabolic phenotype. Results. Compared with osteonecrosis, the expression of miR-486 was significantly upregulated in cartilage from subjects with severe OA. In addition, overexpressed miR-486 promoted a catabolic phenotype in SW1353 cells by upregulating the expressions of ADAMTS4 and MMP-13 and down-regulating the expressions of COL2A1 and ACAN. Conversely, inhibition of miR-486 had the opposite effect. Furthermore, overexpression of miR-486 significantly inhibited the expression of SIRT6, confirming that SIRT6 is a direct target of miR-486. Moreover, SW1353 cells were transfected with small interfering RNA (si)-SIRT6 and it was found that SIRT6 was involved in and inhibited miR-486-induced changes to SW1353 gene expression. Conclusion. Our results indicate that miR-486 promotes a catabolic phenotype in SW1353 cells in OA by targeting SIRT6. Our findings might provide a potential therapeutic target and theoretical basis for OA. Cite this article: Bone Joint Res 2021;10(7):459–466


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 108 - 108
1 Jan 2017
Stevens J Welting T Witlox A van Rhijn L Staal H
Full Access

Dysplasia Epiphysealis Hemimelica (DEH) also known as Trevor's Disease is a rare developmental disorder resulting in cartilaginous overgrowth of the epiphysis of long bones. DEH is usually diagnosed in children between two and eight years old and it is three times more often diagnosed in boys. The most reported complaints are pain, limitation in range of motion, and deformity or swelling of the affected joint. Treatment of symptomatic lesions consists of surgical resection of the lesion, resulting in good long-term results. Based on histological evaluation, DEH is often described as an osteochondroma or an osteochondroma-like lesion, although there are clinical, radiological and genetic differences between DEH and osteochondromas. To investigate the hypothesis that DEH and osteochondromas are histologically identical, two cases of DEH and two cases of osteochondromas in patients with Hereditary Multiple Osteochondroma (HMO) are compared at histological level. Tissue samples from patients with a histopathologically confirmed diagnosis of DEH were compared with two age and gender matched patients diagnosed with HMO. After tissue sampling and processing, (immuno)histological stainings were performed for Collagen type II, Collagen type X, Sox-9 and Safranin-O. Histologically, clumping of chondrocytes in a fibrillar matrix, a thick disorganized cartilage cap and ossification centres with small amounts of unresorbed cartilage were observed in DEH. In contrast, chondrocyte organisation in cartilage of osteochondromas displays characteristics of the normal growth plate. In addition, differences in expression of collagen type II, collagen type X and Sox9 were observed. Collagen type II was expressed in the extracellular matrix surrounding proliferative and hypertrophic chondrocytes in osteochondromas, while weak expression was observed in the entire cartilage cap in DEH. Collagen type X was not expressed in DEH, while expressed in the pericellular matrix surrounding hypertrophic chondrocytes in osteochondromas. Staining for Sox9 was positive in the hypertrophic chondrocytes in osteochondromas, while expressed in the nuclei of all chondrocyte clusters in DEH. Both morphological and immunohistological differences were observed in histological sections of DEH and osteochondromas. These findings reject our hypothesis, and supports the earlier observed clinical, radiological and genetic differences and implies a different aetiology between DEH and osteochondroma formation in HMO


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 505 - 505
1 Oct 2010
Mayer S Büttner A Jansson V Mayer W Müller P Schieker M Schiergens T Sievers B
Full Access

Background: In regenerative medicine the autologous cartilage implantation (ACI) has been used for the repair of cartilage defects. As modification of ACI, the matrix assisted ACI is used nowadays with varying results. There is a general discussion about whether supporting scaffolds should be used or whether a scaffold-free cartilage repair is the method of choice. The major problem of scaffold-free regenerates is how to keep the cells in place after transplantation. Aim of this study was to examine a new scaffold-free diffusion-culture model, which uses a mega-congregate of chondrocytes cultured at an air-medium interface. This scaffold-free high-density diffusion culture could be used to repair cartilage defects. Material and methods: Human chondrocytes from passage 1–7 were expanded in monolayer and transferred to pellet-culture or diffusion-culture. After one week cultures were stained with toluidine blue and safranin-O and evaluated by immunohistochemical staining for type II collagen. Quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) was performed for the mRNAs of cartilage markers. Results: Positive alcian blue staining was detectable in diffusion-culture for human chondrocytes up to passage 7. Within passages the amount of proteoglycan production in relationship to the number of cells increased. There was a positive signal for Collagen type II in diffusion-cultures up to passage 7. In qRT-PCR a redifferentiation of human chondrocytes was shown by the transfer into diffusion-culture. Within passage 1 to 3 human chondrocytes which were cultured in monolayer lost the ability to express Collagen Type II but could regain it if they were transferred to diffusion-culture. At diffusion-culture chondrocytes showed the highest expression of Collagen type II at passage 1 when compared to monolayer or to pellet-culture. Conclusion: It could be shown that the cultivation in a scaffold-free diffusion-culture can lead to redifferentiation of human chondrocytes Chondrocytes in diffusion-cultures tend to form their own matrix and produce Collagen type II at higher amounts than in monolayer or in normal pellet-cultures. Therefore diffusion-culture congregates might be an appropriate tool to be used for a new scaffold-free cartilage regeneration approach


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 123 - 123
2 Jan 2024
Gögele C Müller S Wiltzsch S Lenhart A Schäfer-Eckart K Schulze-Tanzil G
Full Access

The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of bioactive glass (BG) scaffolds presents a promising approach. Until now, conventional BGs have been used mostly for bone regeneration, as they are able to form a hydroxyapatite (HA) layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to compare two BGs based on a novel BG composition tailored specifically for cartilage (CAR12N) and patented by us with conventional BG (BG1393) with a similar topology. The highly porous scaffolds consisting of 100% BG (CAR12N, CAR12N with low Ca2+/Mg2+ and BG1393) were characterized and dynamically seeded with primary porcine articular chondrocytes (pACs) or primary human mesenchymal stem cells (hMSCs) for up to 21 days. Subsequently, cell viability, DNA and glycosaminoglycan contents, cartilage-specific gene and protein expression were evaluated. The manufacturing process led to a comparable high (over 80%) porosity in all scaffold variants. Ion release and pH profiles confirmed bioactivity for them. After both, 7 and 21 days, more than 60% of the total surfaces of all three glass scaffold variants was densely colonized by cells with a vitality rate of more than 80%. The GAG content was significantly higher in BG1393 colonized with pACs. In general, the GAG content was higher in pAC colonized scaffolds in comparison to those seeded with hMSCs. The gene expression of cartilage-specific collagen type II, aggrecan, SOX9 and FOXO1 could be detected in all scaffold variants, irrespectively whether seeded with pACs or hMSCs. Cartilage-specific ECM components could also be detected at the protein level. In conclusion, all three BGs allow the maintenance of the chondrogenic phenotype or chondrogenic differentiation of hMSCs and thus, they present a high potential for cartilage regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 42 - 42
11 Apr 2023
Hanetseder D Hruschka V Redl H Presen D
Full Access

Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. Previous studies suggested that the regenerative activity of stem cells can be enhanced by exposure to tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells-derived mesenchymal-like progenitors (hiPSCs-MPs) can enhance the regenerative potential of human bone marrow mesenchymal stromal cells (hBMSCs). ECM was engineered from hiPSC-MPs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. hBMSCs were cultured on the engineered ECM, and differentiated into osteogenic, chondrogenic and adipogenic lineages. Growth and differentiation responses were compared to tissue culture plastic controls. Decellularization of ECM resulted in efficient cell elimination, as observed in our previous studies. Cultivation hBMSCs on the ECM in osteogenic medium significantly increased hBMSC growth, collagen deposition and alkaline phosphatase activity. Furthermore, expression of osteogenic genes and matrix mineralization were significantly higher compared to plastic controls. Chondrogenic micromass culture on the ECM significantly increased cell growth and expression of chondrogenic markers, including glycosaminoglycans and collagen type II. Adipogenic differentiation of hBMSCs on the ECM resulted in significantly increased hBMSC growth, but significantly reduced lipid vacuole deposition compared to plastic controls. Together, our studies suggest that BMSCs differentiation into osteogenic and chondrogenic lineages can be enhanced, whereas adipogenic activity is decreased by the culture on engineered ECM. Contribution of specific matrix components and underlying mechanisms need to be further elucidated. Our studies suggest that the three-lineage differentiation of aged BMSCs can be modulated by culture on hiPSC-engineered ECM. Further studies are aimed at scaling-up to three-dimensional ECM constructs for osteochondral tissue regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 90 - 90
11 Apr 2023
Williams R Snuggs J Schmitz T Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition. Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel with maintenance of morphology and low caspase 3 staining. NPgel and Albugel maintained NC cell markers (brachyury and cytokeratin 8/18/19) and extracellular matrix (collagen type II and aggrecan). Whilst Brachyury and Cytokeratin were decreased in dNCM/NPgel biomaterials, Aggrecan and Collagen type II was seen in acellular and NC containing dNCM/NPgel materials. NC containing constructs excreted more GAGs over the four weeks than the acellular controls. NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 114 - 114
2 Jan 2024
Fiordalisi M Sousa I Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in vivo to evaluate their anti-angiogenic potential. Young decellularized IVD scaffolds were used as controls. Finally, a large scale protocol to produce a stable, biocompatible and easily injectable fetal IVD-based hydrogel was developed. Fetal scaffolds were more effective at promoting Aggrecan and Collagen type II expression by IVD cells. In a Chorioallantoid membrane assay, only fetal matrices showed an anti-angiogenic potential. The same was observed in vivo when the angiogenesis was induced by human NP cells. In this context, human NP cells were more effective in GAG synthesis within a fetal microenvironment. Vaccum-assisted perfusion decellularized IVDs were obtained, with high DNA removal and sGAG retention. Hydrogel pre-solution passed through 21-30G needles. IVD cells seeded on the hydrogels initially decreased metabolic activity, but increased up to 70% at day 7, while LDH assay revealed cytotoxicity always below 30%. This study will open new avenues for the establishment of a disruptive treatment for IVD degeneration with a positive impact on the angiogenesis associated with LBP, and on the improvement of patients’ quality of life. Acknowledgements: Financial support was obtained from EUROSPINE, ON Foundation and FCT (Fundação para a Ciência e a Tecnologia)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 53 - 53
11 Apr 2023
Vadalà G Di Giacomo G Ambrosio L Cicione C Tilotta V Russo F Papalia R Denaro V
Full Access

This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following incubation with 5, 10 and 25 ng/mL r-irisin for 24 hours and subsequent culture with 10 ng/ml IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with r-irisin). Irisin increased hNPC proliferation (p<0.001), metabolic activity (p<0.05), GAG content (p<0.01), as well as COL2 (p<0.01), aggrecan (p<0.05), TIMP-1 and −3 (p<0.01) gene expression, while decreasing MMP-13 (p<0.05) and IL-1β (p<0.001) mRNA levels. r-irisin pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p<0.001) and a decrease of IL-1β (p<0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-irisin increased hNPC metabolic activity (p<0.001), COL2 gene expression (p<0.05) and decreased IL-1β (p<0.05) and ADAMTS-5 levels (p<0.01). Irisin stimulates hNPC proliferation, metabolic activity, and anabolism by reducing IL-1β and catabolic enzyme expression while promoting matrix synthesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 65 - 65
4 Apr 2023
Mazetyte-Godiene A Vailionyte A Valiokas R Usas A
Full Access

Herein we address, hyaline cartilage regeneration issue by engineering a synthetic biocompatible hydrogel scaffold capable to promote chondrogenic differentiation. In this study, the chemically crosslinked hydrogels consisting of synthetic peptides that have the collagen-like sequence Cys-Gly-(Pro-Lys-Gly)4 (Pro-Hyp-Gly)4 (Asp-Hyp-Gly)4- conjugated with RGD sequence (CLP-RGD) and crosslinked hydrogels of type I collagen (CA) were used. For cartilage formation, we used human skeletal muscle-derived stem/progenitor cells (hMDSPCs) set for differentiation towards a chondrogenic lineage by BMP-7 and TGF-ß3 growth factors. Initially 150, 100 and 75 ng of BMP-7and TGF-ß3 growth factors were inserted in each scaffold and amount of growth factors diffusing out of the scaffolds was observed by ELISA assays. In vitro experiments were performed by seeding hMDSPCs onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days. Cartilage formation was monitored by ELISA and RT-PCR assays. All experiments were performed in triplicates or quadruplicates. Growth factors incorporation strategy allowed a sustained release of TGF-ß3 growth factor, 6.00.3% of the initially loaded amount diffused out after 4 h and 2.70.5% already at the second time point (24h) from CA and CLP-RGD substrates. For the BMP-7 growth factor, 13.12.3% and 15.751.6% of the initially loaded amount diffused out after 4 h, 1.70.2% and 2.450.3% at the second time point (24 h) from CA and CLP-RGD respectively. In vitro experiments shown that scaffolds with immobilized growth factors resulted in higher collagen type II accumulation when compared to the scaffolds alone. The gene expression on CLP-RGD hydrogels with growth factors has shown lower collagen type I expression and higher aggrecan expression compared to day 0. However, we also report increased collagen X gene expression on CA hydrogels (with growth factors). Our results support the potential of the strategy of combining hydrogels functionalized with differentiation factors toward improving cartilage repair


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 18 - 18
1 Nov 2018
Vadalà G
Full Access

Irisin is a hormone-like myokine released from skeletal muscle during exercise. It has also been reported that irisin levels in serum and synovial fluid of knee osteoarthritis (OA) patients were negatively correlated with OA severity. We hypothesized that irisin might play a role in the cartilage homeostasis mediated by physical activity. Therefore, this study aims to explore the cross talk between skeletal muscle and cartilage tissues in human with OA mediated by the myokine irisin. Human articular OA chondrocytes were isolated, expanded and cultured in micro-mass 3-D culture system. Pellets were cultured with or without r-Irisin, and then activated by protein inhibitors of p38-MAPK signalling pathway. After one week the amount of GAG content was evaluated. Quantitative gene expression of Coll-X and Coll-II was performed. WB was utilized to detect expressions of p38-MAPK signalling pathway and Coll-X and Coll-II. In the current study, chondrocytes cultured in r-Irisin showed a significant higher GAG/DNA content compared to control (p<0.05). Moreover, r-Irisin promoted a significant increase of the expression collagen type II and decrease of collagen type X in (p<0.05). This OA chondrocytes recovery was abrogated by the p38 MAPK and ERK signalling pathways. Our observation suggests that Irisin targets chondrocytes promoting GAG content, increasing Collagen Type II and decreasing Collagen type X gene expressions. The observed OA chondrocyte recovery mediated by irisin is obtained through the inactivation of p38/ERK MAP kinase signalling cascades in vitro. This is the first study that demonstrates a cross-talk between muscle and cartilage mediated by irisin