Advertisement for orthosearch.org.uk
Results 1 - 20 of 252
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 80 - 80
4 Apr 2023
Prabhakaran V Hawkswell R Paxton J
Full Access

3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way ANOVA and post-hoc Tukey test was performed to compare cell viability among different media and seeding densities. Histological spheroid sections were stained with hematoxylin and eosin (H&E) to identify any visible necrotic core. Cell number increased from day 1 to 28 in all three seeding densities with a notable decrease in cell viability. 1×10. 4. cells proliferated faster than 5×10. 4. and 1×10. 5. cells and had proportionately similar cell death. The necrotic core area was relatively equivalent between all cell seeding densities. The larger the spheroid size, the larger is the size of the necrotic core. This study has demonstrated that 3D spheroids can be formed from dRobs at a variety of seeding densities with no marked difference in necrotic core formation. Future studies will focus on utilising the bone cell spheroids for engineering scalable scaffold-free bone tissue constructs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture. In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 10. 3. cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT. Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis. Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway


Bone & Joint Research
Vol. 10, Issue 3 | Pages 218 - 225
1 Mar 2021
Wiesli MG Kaiser J Gautier E Wick P Maniura-Weber K Rottmar M Wahl P

Aims. In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Methods. Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. Results. Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. Conclusion. This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218–225


Bone & Joint Research
Vol. 11, Issue 7 | Pages 439 - 452
13 Jul 2022
Sun Q Li G Liu D Xie W Xiao W Li Y Cai M

Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article: Bone Joint Res 2022;11(7):439–452


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 92 - 92
1 Jul 2020
Niedermair T Straub R Schirner S Seebröker R Grässel S
Full Access

Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell metabolism of cells isolated from young α-CGRP-deficient mice. We assume that aging processes differently affect bone cell metabolism in the absence and presence of α-CGRP. To further explore this hypothesis, we investigated and compared cell metabolism of osteoblasts and bone marrow derived macrophages (BMM)/osteoclast cultures isolated from young (8–12 weeks) and old (9 month) α-CGRP-deficient mice and age matched WT controls. Isolation/differentiation of bone marrow macrophages (BMM, for 5 days) to osteoclasts and osteoblast-like cells (for 7/14/21 days) from young (8–12 weeks) and old (9 month) female α-CGRP−/− and WT control (both C57Bl/6J) mice according to established protocols. We analyzed cell migration of osteoblast-like cells out of femoral bone chips (crystal violet staining), proliferation (BrdU incorporation) and caspase 3/7-activity (apoptosis rate). Alkaline phosphatase (ALP) activity reflects osteoblast bone formation activity and counting of multinucleated (≥ 3 nuclei), TRAP (tartrate resistant acid phosphatase) stained osteoclasts reflects osteoclast differentiation capacity. We counted reduced numbers of BMM from young α-CGRP−/− mice after initial seeding compared to young WT controls but we found no differences between old α-CGRP−/− mice and age-matched controls. Total BMM number was higher in old compared to young animals. Migration of osteoblast-like cells out of bone chips was comparable in both, young and old α-CGRP−/− and WT mice, but number of osteoblast-like cells was lower in old compared to young animals. Proliferation of old α-CGRP−/− BMM was higher when compared to age-matched WT whereas proliferation of old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation was lower. No differences in bone cell proliferation was detected between young α-CGRP−/− and age-machted WT mice. Caspase 3/7 activity of bone cells from young as well as old α-CGRP−/− mice was comparable to age-matched controls. Number of TRAP-positive multinucleated osteoclasts from young α-CGRP−/− mice was by trend higher compared to age-matched WT whereas no difference was observed in osteoclast cultures from old α-CGRP−/− mice and old WT. ALP activity, as a marker for bone formation activity, was comparable in young WT and α-CGRP−/− osteoblasts throughout all time points whereas ALP activity was strongly reduced in old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation compared to age-matched WT. Our data indicate that loss of α-CGRP results in a reduction of bone formation rate in older individuals caused by lower proliferation and reduced activity of osteogenic cells but has no profound effects on bone resorption rate. We suggest that the osteopenic bone phenotype described in aged α-CGRP-deficient mice could be due to an increase of dysfunctional matured osteoblasts during aging resulting in impaired bone formation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2018
Niedermair T Schirner S Seebröker R Straub R Grässel S
Full Access

Previously, we have demonstrated reduced biomechanical bone strength and matrix quality in Tachykinin (Tac)1-deficient mice lacking the sensory neuropeptide substance P (SP). A similar distortion of bone microarchitecture was described for α-calcitonin gene-related pepide (α-CGRP)-deficient mice. In previous studies we observed alterations in cell survival and differentiation capacity of bone cells isolated from wildtype mice when stimulated with SP and α-CGRP. We assume that changes in sensory neurotransmitter balance modulate bone cell metabolism thereby possibly contributing to inferior bone quality. In order to explore this hypothesis, we investigated and compared metabolic parameters in osteoblasts and osteoclasts isolated from SP- and α-CGRP-deficient mice and wildtype (WT) controls. Bone marrow-derived macrophages (BMMs) and osteoblast-like cells from female C57Bl/6J (WT-control), Tac1-deficient (Tac1-/−) and α-CGRP-deficient (α-CGRP-/−) mice were isolated and differentiated according to established protocols (Niedermair et al., 2014). Cell metabolism studies were performed for enzyme activity and cell survival. We observed reduced numbers of BMM from Tac1-/− and α-CGRP-/− mice after initial seeding compared to WT but no changes in viability. Osteoblast-like cells from Tac1-/− mice tend to migrate out faster from bone chips compared to WT-controls whereas migration of osteoblast-like cells from α-CGRP-/− mice was not affected. Osteoblasts and osteoclast/BMM cultures from WT mice endogenously synthesize and secrete SP as well as α-CGRP at a picomolar range. We found no changes regarding BMM or osteoblast proliferation from both, Tac1-/− and α-CGRP-/− mice when compared to WT-controls. Caspase 3/7-activity was reduced by trend in osteoclast/BMM cultures of α-CGRP-/− mice and significantly reduced in osteoclast/BMM cultures of Tac1-/− mice compared to WT-controls. We found significantly higher Caspase 3/7-activity in osteoblasts of Tac1-/− mice after 14 days of osteogenic culture conditions when compared to WT-controls whereas osteoblasts of α-CGRP-/− mice were unaffected. Cathepsin K enzyme activity was significantly reduced in osteoclast/BMM cultures of Tac1-/− and α-CGRP-/− mice compared to WT-controls. ALP activity of Tac1-/− osteoblasts was higher after 7 days and reduced after 21 days of osteogenic culture compared to WT-controls whereas ALP activity of osteoblasts of α-CGRP-/− mice was unchanged. Acccording to our in vitro observations, we suggest some reduction in bone resorption rate but concomitantly a reduction in bone formation rate in Tac1-/− mice compared to WT-controls resulting in a net bone loss in these mice as bone resorption is faster than bone formation. Furthermore, we assume that bone resorption rate is slightly reduced in α-CGRP-/− mice but bone formation rate seems to be unchanged. Therefore we hypothesize that additional conditions present in vivo might contribute to the inferior bone properties of α-CGRP-/− mice


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 40 - 40
1 Dec 2021
Wiesli M Kaiser J Gautier E Wick P Maniura K Rottmar M Wahl P
Full Access

Aim

Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of human pre-osteoblasts.

Method

Human pre-osteoblasts were cultured up to 28 days in different ceftriaxone concentrations, ranging between 0 mg/L and 50’000 mg/L. Cytotoxicity was determined quantitatively by measuring lactate dehydrogenase release, metabolic activity, and cell proliferation. Gene expression analysis of bone-specific markers as well as mineralization and protein expression of collagen-I (Col-I) were investigated to assess osteogenic differentiation.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims

To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone.

Methods

Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims

Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone.

Methods

The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 197 - 197
1 Jul 2014
Marmotti A Castoldi F Rossi R Bruzzone M Dettoni F Marenco S Bonasia D Blonna D Assom M Tarella C
Full Access

Summary Statement

Preoperative bone-marrow-derived cell mobilization by G-CSF is a safe orthopaedic procedure and allows circulation in the blood of high numbers of CD34+ve cells, promoting osseointegration of a bone substitute.

Introduction

Granulocyte-colony-stimulating-factor(G-CSF) has been used to improve repair processes in different clinical settings for its role in bone-marrow stem cell(CD34+ and CD34-) mobilization. Recent literature suggests that G-CSF may also play a role in skeletal-tissue repair processes. Aim of the study was to verify the feasibility and safety of preoperative bone-marrow cell (BMC) mobilization by G-CSF in orthopaedic patients and to evaluate G-CSF efficacy in accelerating bone regeneration following opening-wedge high tibial valgus osteotomy(HTVO) for genu varum.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 443 - 443
1 Jul 2010
Albertini U Piana R Gino G Boux E Marone S Boffano M Linari A Faletti C del Prever EB
Full Access

Giant cell tumor (GCT) of bone is an aggressive tumor with high rate of recurrence. Bad prognosis factors were inquired, without a definite identification: type of treatment, soft tissue invasion, high proliferation rate at histology, pathologic fracture.

From January 2000 to February 2008, 38 patients affected by GCT were treated in a regional reference centre, 17 male, mean age 32 (range 16–69, median 29); one patient had 2 localizations (tarsal bone and proximal tibia); 3 were recurrences previously treated in other hospitals. Seven cases were in upper limb, 1 case in the sacrum, 30 in lower limb (20 around the knee); fracture at presentation was present in 6 cases; bone aneurismal cyst (ABC) was associated in 4 cases. Five cases in stage 3 were treated by bone resection followed in 4 cases by allograft and/or prosthesis (no reconstruction in 1 proximal fibula excision); 33 cases were treated by curettage, local chemical (phenole) and mechanical adjuvants (burring), filling with bone grafts in 13 cases, cement in 8 cases, cement and allografts in subchondral area in 11 cases. The sacral lesion was only curetted.

Seven patients developed a local recurrence, in 2 patients twice, for a total of 9 recurrences (19% of treatments). Recurrences occurred in 2 proximal tibia, in 2 distal femurs, in 1 proximal femur, in 1 distal radius and in 1 proximal fibula. The first treatment was bone grafts in 3 cases (23% of recurrence), bone cement and grafts in 2 cases (18% of recurrence), cement in 1 case (12% of recurrence), resection in the proximal fibula with severe soft tissue invasion. Two patients with associated ABC developed a recurrence and two with fracture at presentation.

In this study, increased rate of recurrences occurred with pathologic fracture at presentation, soft tissue invasion and ABC association.


Bone & Joint Research
Vol. 3, Issue 2 | Pages 38 - 47
1 Feb 2014
Hogendoorn S Duijnisveld BJ van Duinen SG Stoel BC van Dijk JG Fibbe WE Nelissen RGHH

Objectives

Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps.

Methods

Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 63 - 63
1 Oct 2022
Mendelsohn DH Walter N Niedermair T Alt V Brochhausen C Rupp M
Full Access

Aim. Osteomyelitis is a difficult-to-treat disease with high chronification rates. The surgical amputation of the afflicted limb sometimes remains as the patients’ last resort. Several studies suggest an increase in mitochondrial fission as a possible contributor to the accumulation of intracellular reactive oxygen species and thereby to cell death of infectious bone cells. The aim of this study is to analyze the ultrastructural impact of bacterial infection and its accompanying microenvironmental tissue hypoxia on osteocytic and osteoblastic mitochondria. Method. 19 Human bone tissue samples from patients with osteomyelitis were visualized via light microscopy and transmission electron microscopy. Osteoblasts, osteocytes and their respective mitochondria were histomorphometrically analyzed. The results were compared to the control group of 5 non-infectious human bone tissue samples. Results. The results depicted swollen hydropic mitochondria including depleted cristae and a decrease in matrix density in the infectious samples as a common finding in both cell types. Furthermore, perinuclear clustering of mitochondria could also be observed regularly. Additionally, increases in relative mitochondrial area and number could be found as a sign for increased mitochondrial fission. Conclusions. The results show that mitochondrial morphology is altered during osteomyelitis in a comparable way to mitochondria from hypoxic tissues. This suggests that manipulation of mitochondrial dynamics in a way of inhibiting mitochondrial fission may improve bone cell survival and exploit bone cells regenerative potential to aid in the treatment of osteomyelitis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 19 - 19
23 Apr 2024
Guichet J Clementi D
Full Access

Introduction. Humans Functions (locomotion, protection of organs, reproduction) require a strong support system (bones). The ‘Osteostasis’ is the ability of maintaining the bone structure, its mechanical characteristics and function. Five principles are required for an efficient bone system:. Basic Requirements:. 1) Stability and 2) Function. Repair System (like house building in desert or sea):. 3) Roads (vessels), 4) Materials (calories, proteins), 5) Workers (bone cells). Analysis of bone problems through these principles bring to optimised treatments. Materials & Methods. Measurements (>700 lengthening, 32-year follow-up, Full WB Albizzia/G-Nails FWBAG): Bone-DEXA, WB conditions, muscle, fat, etc. Principle-1. Solid bone replacement with a 100% biocompatible and reliable FWBAG with sports (POD0). Principle-2. Bone, Muscle & neural integrity for function Principle-3. Vascular flow lesions induce non-healing (arteriography). Muscle activity accounts for 90% of bone blood flow, ×10 by sports. Required: Checks (arteriography) and treatments (training). Principle-4. Food (NRV Kcal × 2–3, 20–25% proteins). Principle-5. Maintain bone cells and increase them. Suppress ‘opening’, ‘venting’, ‘drainages’. Results. Principle1. Nail fracture (1.2%), nail dysfunction (0%) with FWBAG. Principle2. Intensive sports preop and from POD0 - Principle3. Increased preop vascular supply & muscle force, postop resistance sports fasten recovery. Wheel-chair or low activity decreases healing. Principle4. 6–9 cm circumference loss (non WB-nails or no proper training); 0 cm circumference loss (gain <10 cm) with intense resistance training + high calory intake. - Principle5. Bone cells preservation (no opening, IM saw, increasing bone cells) allow Healing Index down to 8D/cm. Conclusions. The ‘5P’ allow reaching treatment targets by optimisation of problem solving, maintaining Osteostasis. What would I like or tolerate for me? How can I reach it? Full WB and sports from POD0 was a target 38 years-ago, still not enforced by most of us. Resistance sports, high-calory intake suppress muscle loss and fasten healing, thanks to muscle blood flow and the ‘5P’


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 23 - 23
1 Dec 2022
Borciani G Montalbano G Melo P Baldini N Ciapetti G Brovarone CV
Full Access

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and bone inducers, is a potential alternative to conventional treatments. Pre-clinical testing of innovative scaffolds relies on in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs) is required to mimic their crosstalk and molecular cooperation for bone remodelling. To this aim, two composite materials based on type I collagen were developed, containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. Following chemical crosslinking with genipin, the nanostructured materials were tested for 2–3 weeks with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors. The favourable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of bone cells, encouraging a further investigation of the two bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 85 - 85
11 Apr 2023
Williamson A Bateman L Kelly D Le Maitre C Aberdein N
Full Access

The effect of high-fat diet and testosterone replacement therapy upon bone remodelling was investigated in orchiectomised male APOE-/- mice. Mice were split in to three groups: sham surgery + placebo treatment (control, n=9), orchiectomy plus placebo treatment (n=8) and orchiectomy plus testosterone treatment (n=10). Treatments were administered via intramuscular injection once a fortnight for 17 weeks before sacrifice at 25 weeks of age. Tibiae were scanned ex-vivo using µCT followed by post-analysis histology and immunohistochemistry. Previously presented µCT data demonstrated orchiectomised, placebo treated mice exhibited significantly reduced trabecular bone volume, number, thickness and BMD compared to control mice despite no significant differences in body weight. Trabecular parameters were rescued back to control levels in orchiectomised mice treated with testosterone. No significant differences were observed in the cortical bone. Assessment of TRAP stained FFPE sections revealed no significant differences in osteoclast or osteoblast number along the endocortical surface. IHC assessment of osteoprotegerin (OPG) expression in osteoblasts is to be quantified alongside markers of osteoclastogenesis including RANK and RANKL. Results support morphological analysis of cortical bone where no change in cortical bone volume or density between groups is in line with no significant change in osteoblast or osteoclast number and percentage across all three groups. Future work will include further IHC assessment of bone remodelling and adiposity, as well as utilisation of mechanical testing to establish the effects of observed morphological differences in bone upon mechanical properties. Additionally, the effects of hormone treatments upon murine-derived bone cells will be investigated to provide mechanistic insights


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 50 - 50
4 Apr 2023
Wang Z van den Beucken J van den Geest I Leeuwenburgh S
Full Access

Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common bone substitutes used in clinics are barely studied in research for local delivery of chemotherapeutic drugs. Here, we aimed to use facile manufacturing methods to render polymethylmethacrylate (PMMA) cement and ceramic granules suitable for local delivery of cisplatin to limit bone tumor recurrence. Porosity was introduced into PMMA cement by adding 1-4% carboxymethylcellulose (CMC) containing cisplatin, and chemotherapeutic activity was rendered to two types of granules via adsorption. Then, mechanical properties, porosity, morphology, drug release kinetics, ex vivo reconstructive properties of porous PMMA and in vitro anti-cancer efficacy against osteosarcoma cells were assessed. Morphologies, molecular structures, drug release profiles and in vitro cytostatic effects of two different drug-loaded granules on the proliferation of metastatic bone tumor cells were investigated. The mechanical strengths of PMMA-based cements were sufficient for tibia reconstruction at CMC contents lower than 4% (≤3%). The concentrations of released cisplatin (12.1% and 16.6% from PMMA with 3% and 4% CMC, respectively) were sufficient for killing of osteosarcoma cells, and the fraction of dead cells increased to 91.3% within 7 days. Functionalized xenogeneic granules released 29.5% of cisplatin, but synthetic CaP granules only released 1.4% of cisplatin over 28 days. The immobilized and released cisplatin retained its anti-cancer efficacy and showed dose-dependent cytostatic effects on the viability of metastatic bone tumor cells. Bone substitutes can be rendered therapeutically active for anticancer efficacy by functionalization with cisplatin. As such, our data suggest that multi-functional PMMA-based cements and cisplatin-loaded granules represent viable treatment options for filling bone defects after bone tumor resection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 49 - 49
4 Apr 2023
Zelmer A Gunn N Nelson R Richter K Atkins G
Full Access

Staphylococcus aureus (SA), the predominant pathogen in human osteomyelitis, is known to persist by forming intracellular reservoirs, including in bone cells (Schwarz et al., 2019, Yang et al., 2018, Krauss et al., 2019, Gao et al., 2020, Bosse et al., 2005), promoting decreased antibiotic susceptibility. However, there are no evidence-based treatment guidelines for intracellular SA infections in osteomyelitis. We sought to address this by systematically reviewing the literature and, testing a selection of antibiotic treatments in a clinically relevant in vitro assay. We conducted a systematic review of the literature to determine the current evidence for the efficacy of antibiotics against intracellular SA infections relevant to osteomyelitis. For the antibiotics identified as potentially useful, we determined their minimal inhibitory concentration (MIC) against 11 clinical osteomyelitis SA- isolates. We selected those for further testing reported able to reach a higher concentration in the bone than the identified MIC against the majority of strains. Thus, rifampicin, oxacillin, linezolid, levofloxacin, oritavancin and doxycycline were tested in human SaOS-2-osteocyte infection models (Gunn et al., 2021) of acute (1d) or chronic (14d) infection to clear intracellular SA. Antibiotics were tested at 1x/4x/10x the MIC for the duration of 1d or 7d in each model. A systematic review found that osteoblasts and macrophages have mostly been used to test immediate short-term activity against intracellular SA, with a high variability in methodology. However, some extant evidence supports that rifampicin, oritravancin, linezolid, moxifloxacin and oxacillin may be effective intracellular treatments. While studies are ongoing, in vitro testing in a clinically relevant model suggests that rifampicin, oxacillin and doxycycline could be effectively used to treat osteomyelitic intracellular SA infections. Importantly, these have lower MICs against multiple clinical isolates than their respective clinically-achievable bone concentrations. The combined approach of a systematic review and disease-relevant in vitro screening will potentially inform as to the best approach for treating osteomyelitis where intracellular SA infection is confirmed or suspected