Advertisement for orthosearch.org.uk
Results 1 - 20 of 63
Results per page:
Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims

Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS).

Methods

Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 1 - 1
23 Jun 2023
Parker J Horner M Jones SA
Full Access

Contemporary acetabular reconstruction in major acetabular bone loss often involves the use of porous metal augments, a cup-cage construct or custom implant. The aims of this study were: To determine the reproducibility of a reconstruction algorithm in major acetabular bone loss. To determine the subsequent success of reconstruction performed in terms of re-operation, all-cause revision and Oxford Hip Score (OHS) and to further define the indications for custom implants in major acetabular bone loss. Consecutive series of Paprosky Type III defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical cup. IIIB defects were planned to receive either augment and cup, cup-cage or custom implant. 105 procedures in cohort 100 patients (5 bilateral) with mean age 73 years (42–94). IIIA defects (50 cases) − 72.0% (95%CI 57.6–82.1) required a porous metal augment the remainder treated with a hemispherical cup alone. IIIB defects (55 cases) 71.7% (95%CI 57.6–82.1) required either augments or cup-cage. 20 patients required a hemispherical cup alone and 6 patients received a custom-made implant. Mean follow up of 7.6 years. 6 re-revisions were required (4 PJI, 2 peri-prosthetic fractures & 1 recurrent instability) with overall survivorship of 94.3% (95% CI 97.4–88.1) for all cause revision. Single event dislocations occurred in 3 other patients so overall dislocation rate 3.8%. Mean pre-op OHS 13.8 and mean follow-up OHS 29.8. Custom implants were used in: Mega-defects where AP diameter >80mm, complex discontinuity and massive bone loss in a small pelvis (i.e., unable to perform cup-cage). A reconstruction algorithm can >70% successfully predict revision construct which thereafter is durable with a low risk of re-operation. Jumbo cup utilized <1/3 of cases when morphology allowed. The use of custom implants has been well defined in this series and accounts for <5% of cases


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 107 - 107
1 May 2019
Schmalzried T
Full Access

Hemispheric, porous-ingrowth revision acetabular components (generally with multiple screw fixation) have demonstrated versatility and durability over 25 years. Jumbo cups (minimum diameter of 62mm in women, 66mm in men, or 10mm larger than the normal contralateral acetabulum) are utilised in the majority of revisions with acetabular bone loss, with or without bone grafting, or other augmentation. The popularity of jumbo cups is due to their relative ease of use and the reliability of the result. With up to 20-year follow-up, and failure defined as cup revision for aseptic loosening or radiographic evidence of loosening, implant survival was 97.3% (95% confidence interval, 89.6% to 99.3%) at ten years and 82.8% (95% CI, 59% to 97.6%) at fifteen years. Twenty-year survivorship with 88% free from aseptic loosening of the metal acetabular component has been reported. Instability is decreased in association with larger diameter bearings. Revisions associated with wear of non-crosslinked polyethylene increased in the second decade. Crosslinked polyethylene and ultra-porous materials will likely increase both the durability and the utility of jumbo cups


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 219 - 219
1 Dec 2013
Kurdziel M Ackerman J Salisbury M Baker E Verner JJ
Full Access

Purpose:. Acetabular bone loss during revision total hip arthroplasty (THA) poses a challenge for reconstruction as segmental and extensive cavitary defects require structural support to achieve prosthesis stability. Trabecular metal (TM) acetabular augments structurally support hemispherical cups. Positive short-term results have been encouraging, but mid- to long-term results are largely unknown. The purpose of this study was to determine the continued efficacy of TM augments in THA revisions with significant pelvic bone loss. Methods:. Radiographs and medical records of 51 patients who had undergone THA revision with the use of a TM augment were retrospectively reviewed. Acetabular defects were graded according to the Paprosky classification of acetabular deficiencies based on preoperative radiographs and operative findings. Loosening was defined radiographically as a gross change in cup position, change in the abduction angle (>5°), or change in the vertical position of the acetabular component (>8 mm) between initial postoperative and most recent follow-up radiographs (Figure 1). Results:. Eleven patients had incomplete radiographic follow-up and were excluded. The study population included 17 men and 23 women, averaging 68.1 ± 14.1 years of age (range, 37–91), with average radiographic follow-up of 19.0 months (range, 2.4–97.4). Reasons for revision included osteolysis (n = 20, 38.5%), component loosening (n = 18, 15.4%), and periprosthetic fracture (n = 6, 11.5%). All patients underwent revision THA using a TM multi-hole revision acetabular cup and TM acetabular augment(s) to fill bony defects. Morcellized allograft was used in 9 patients. There were 33 Paprosky Type IIIA and seven Paprosky Type IIIB defects. One patient with Paprosky Type IIIB had catastrophic failure of the reconstructive construct three months postoperatively. The remaining 39 acetabular revisions demonstrated signs of bony ingrowth at the latest follow-up. There were no radiolucent lines suggestive of loosening, and no significant differences in abduction angle (p = 0.78), vertical distance between the superolateral edge of the cup and the trans-ischial reference line (p = 0.96), or the vertical distance between the center of the femoral head and trans-ischial reference line (p = 0.75) between the initial postoperative and most recent follow-up radiographs (Figure 2). Discussion and Conclusion:. Achieving fixation and long-term stability in THA revisions with segmental and/or cavitary bone loss is challenging. TM augments provide a modular structural system to achieve bony ingrowth, while avoiding large structural allografts, cages, and custom implants. At latest follow-up, 39 revision hips remained well-fixed with no evidence of loosening. One patient with a significant surgical history of infection, periprosthetic femur fracture, and 2 prior revision surgeries before acetabular reconstruction had an early clinical failure. Trabecular metal augments can be used for reconstruction of acetabular bone loss with good mid-term results. Continued follow-up is warranted for radiographic evaluation of bony integration and implant stability to determine long-term survivorship of these implants


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 313 - 313
1 May 2010
Wein F Roche O Touchard O Navez G Sirveaux F Molé D
Full Access

Introduction: Treatment of acetabular defects can be difficult, especially in case of roof destruction. Since 9 years, we use a variant of Paprosky’s technique which consists in rebuilding the roof by structural allograft and acetabular reinforcement ring. The purpose of this study is to present this technique and the follow up results. Patients: This retrospective study concerns 21 patients (23 hips) with severe acetabular bone loss (8 cases of stage 2 and 15 cases of stage 3 of Paprosky): 4 septical and 19 aseptical loosening. Between 1998 and 2005, all patients were operated with the same surgical technique using an allogeneic structural allograft (femoral head or distal femur) and an acetabular reinforcement ring (20 of KERBOULL, 3 of GANZ) associated with a cemented PE cup. Method: Review included a clinical and X-ray evaluation (analysis of the refocusing of the hip, the positioning and the stability of implants and the graft incorporation). Results: Mean duration of follow-up is 3,5 years [1–8,3]. Preoperative PMA score rised from 6,6 [0–12] to 15,8 [12–18] in postoperative. There was no peroperative complication. After surgery, 2 cases of early hip dislocation required PE block; 2 cases of sepsis were treated, one by washing and one by a surgical revision. In 60% of cases, immediate total weight bearing was allowed. The immediate postoperative X-rays showed that the rotation center of the hip was 5,2 mm [0–10] far from the ideal rotation center (26% of cases: 0 mm) and the PE cup was implanted with a lateral inclination of 42,5° [30–55]. In postoperative X-ray follow up, one case of acetabular aseptic loosening was found which didn’t need hip revision. In all other cases no modification of implants position neither of hip rotation center was noted. In 79% of cases, we had total graft incorporation; in 17% of cases, an non evolutive radiolucent area between graft and bone and in 4% of cases (loosening) a graft migration. Conclusion: The use of a structural allograft combined with acetabular reinforcement ring allows hip reconstruction in severe acetabular bone loss with good medium term results


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 53 - 53
1 Mar 2009
Regis D Sandri A Citriniti E Bartolozzi P
Full Access

Introduction: The management of periprosthetic osteolysis is a challenging problem in revision hip arthroplasty. Filling acetabular bone defects with structural allografts resulted in early failure due to resorption of the graft. The application in combination with reinforcement rings should promote bone incorporation as a result of reduced mechanical stresses. This study evaluates the long-term results in the treatment of acetabular deficiencies using bulk allografts supported with a Burch-Schneider Anti-Protrusio Cage (APC). Materials and Methods: From January 1992 to December 1995, 69 consecutive patients underwent revision surgery following periprosthetic osteolysis and aseptic loosening of the cup. Acetabular bone loss included IIIA and IIIB types according to Paproski classification. 12 patients died for unrelated causes with a well-functioning total hip arthroplasty in situ. 3 cases were lost at follow-up. The study group consisted of 56 hips in 54 patients. There were 11 males and 43 females, aged from 33 to 84 years (medium 65). Average follow-up was 11.7 years, ranging from 10 to 14.4. Surgical procedure included filling acetabular bone defects with bulk allografts supported with a Burch-Schneider APC which was fixed with screws to the iliac bone. A poly-ethylene cup was finally cemented into the metal cage. Deambulation was allowed one week after surgery, but weightbearing was delayed two months. Clinical evaluation was determined using Harris hip score (HHS). The stability of the acetabular implant was assessed according to Gill criteria. The progression of the bone graft was evaluated using Gross grading. Results: 2 patients developed deep infection that was treated by resection-arthroplasty. Aseptic loosening of acetabular cage following an extensive resorption of bone graft was observed in 6 cases and 3 of them underwent rerevision. X-ray signs of graft incorporation occurred in 48 hips. Average HHS values of 30 (range, 11 to 81) and 75 (range, 28 to 100) points were assessed respectively in the preoperative time and at follow-up. Discussion and Conclusions: In severe acetabular bone deficiencies the application of reinforcement rings in combination with massive allografts has been advocated in order to prevent bone graft resorption and cup loosening. Burch-Schneider Anti-Protrusio Cage is able to protect the graft spanning bone defects and promoting augmentation of periprosthetic bone stock. With an aseptic failure rate of 8.9% and a total survival rate of 85.7% at an average of 11.7 years, the use of APC and structural allograft proved out to be an effective procedure in the long-term reconstructive treatment of extensive loss of acetabular bone stock


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 65 - 65
1 Jun 2018
Engh C
Full Access

Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66mm in men and 62mm in women. In published studies this size cup is used in 14–39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky Type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80%-96% at time frames from 15–20 years. The most common post-operative complication is dislocation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 62 - 62
1 Dec 2016
Della Valle AG
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3B) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement.

Between 2006 and 2014, sixteen patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all polyethylene cup was used. Preoperative diagnosis was aseptic loosening (10 cemented and 6 non-cemented). The femoral component was revised in 9 patients. Postoperative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically.

One patient had an incomplete postoperative sciatic palsy. After a mean follow up of 40 months (24 to 104) none of the patients required re-revision. One asymptomatic patient presented with aseptic loosening 9 years postoperatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations.

The early and mid-term results of revisions for large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant make this technique an attractive option for these large defects. Longer follow-up is needed to assess survivability.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 63 - 63
1 Dec 2016
Gross A
Full Access

Impaction grafting is an excellent option for acetabular revision. It is technique specific and very popular in England and the Netherlands and to some degree in other European centers. The long term published results are excellent. It is, however, technique dependent and the best results are for contained cavitary defects. If the defect is segmental and can be contained by a single mesh and impaction grafting, the results are still quite good. If, however, there is a larger segmental defect of greater than 50% of the acetabulum or a pelvic discontinuity, other options should be considered.

Segmental defects of 25–50% can be managed by minor column (shelf) or figure of 7 structural allografts with good long term results. Porous metal augments are now a good option with promising early to mid-term results. Segmental defects of greater than 50% require a structural graft or porous augment usually protected by a cage. If there is an associated pelvic discontinuity then a cup cage is a better solution.

An important question is does impaction grafting facilitate rerevision surgery? There is no evidence to support this but some histological studies of impacted allograft would suggest that it may. On the other hand there are papers that show that structural allografts do restore bone stock for further revision surgery. Also the results of impaction grafting are best in the hands of surgeons comfortable with using cement on the acetabular side, and one of the reasons why this technique is not as popular in North America.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 26 - 27
1 Mar 2006
Perka C Katterle H Drahn T Matziolis G
Full Access

Introduction: The objective of the study was to test the hypothesis that revision total hip arthoplasty in cases with extensive acetabular bone defects performed with a newly developed, conical, titanium, ribbed shaft socket designed for cementless press-fit into the dorsocranial ilium would not demonstrate inferior outcomes using literature controls.

Methods: 38 consecutive hips had an acetabular revision with a pedestal cup. All of the patients had a type IIIa or IIIb defect according the Paprosky-classification. There was an average follow-up of 4.2 years, with a range of 3 to 6 years. Two patients died, one patient was lost to follow-up. All patients were evaluated radiographically, by CT-Scan and clinically.

Results: At the time of follow-up, 32 (91.4%) cups were stable. Aseptic loosenings occured in one case, septic loosenings occured in 2 cases. The average Harris Hip Score improved from 43 points (range: 16–78 points) preoperatively to 82 points (range 56–98 points) postoperatively. Complications included four dislocations without recurrency. The guide instrument facilitates correct anchorage in the dorsal ilium in all cases.

Conclusion: The presented findings show the short-term efficancy of the procedure with respect to implant fixation and clinical results in large acetabular defects, but longer follow-ups and a larger number of patients are needed before the durability of this reconstructive technique can be assessed. The implant allows restoration of the correct centre of rotation, equalization of leg length and optimization of the strength of the hip abductors. Our results should be considered encouraging.


Aim

To introduce and promote a new technic and a new component using the 3D technology in the extreme acetabular revisions.

Method

Since 2012, 13 patients, nine women and four men, were treated, 12 for a chronic complex PJI and one for an aseptic loosening. The average age was 75 years old (60 -90 years), the average follow-up 18,6 months (7–36 months).

The revisions were bipolar in 12 cases and unipolar in one case for the oldest patient. For the septic cases, we performed 7 one stage procedure and 5 two stages. The femoral components were in 7 cases a modular stem, in 5 cases a massive component and a total femur. All these massive components were combined with a cemented double cup.

The bone loss was evaluated with the AAOS, the Praposky and the Saleh classifications.

A preoperative and postoperative Oxford score was used.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 275 - 275
1 Jul 2011
Backstein D Kosashvili Y Safir O Lakstein D MacDonald M Gross AE
Full Access

Purpose: Pelvic discontinuity associated with bone loss is a complex challenge in acetabular revision surgery. Reconstruction with anti protrusion cages, Trabecular Metal (Zimmer, Warsaw, Indiana) cups and morselized bone (Cup-Cage) constructs is a relatively new technique used by the authors for the past 6 years. The purpose of the study was to examine the clinical outcome of these patients.

Method: Thirty-two consecutive acetabular revision reconstructions in 30 patients with pelvic discontinuity and bone loss treated by cup cage technique between January 2003 and September 2007 were reviewed. Average clinical and radiological follow up was 38.5 ± 19 months (range 12 – 68, median 34.5). Failure was defined as component migration > 5mm.

Results: In 29 (90.6%) patients there was no clinical or radiographic evidence indicative of loosening at latest follow up. Harris Hip Scores improved significantly (p< 0.001) from 46.6 ± 10.4 to 78.7 ± 10.4 at 2 year follow up. In 3 patients the construct migrated at 1 year post surgery. One construct was revised to anti protrusion cage with a structural graft while the other was revised to a large Trabecular Metal cup. The third patient is scheduled for revision. Complications included 2 dislocations, 1 infection and 1 partial peroneal nerve palsy. Two patients died due to unrelated reasons at 1 and 3 years post surgery, respectively.

Conclusion: Treatment of pelvic discontinuity by Cup-Cage construct is a reliable option based on preliminary results which suggest restoration of the pelvic mechanical stability. However, patients should be followed closely in order to detect cup migration until satisfactory bony ingrowth into the cup takes place.


Instability and aseptic loosening are the two main complications after revision total hip arthroplasty (rTHA). Dual-mobility (DM) cups were shown to counteract implant instability during rTHA. To our knowledge, no study evaluated the 10-year outcomes of rTHA using DM cups, cemented into a metal reinforcement ring, in cases of severe acetabular bone loss. We hypothesized that using a DM cup cemented into a metal ring is a reliable technique for rTHA at 10 years, with few revisions for acetabular loosening and/or instability. This is a retrospective study of 77 rTHA cases with severe acetabular bone loss (Paprosky ≥ 2C) treated exclusively with a DM cup (NOVAE STICK; SERF, DÉCINES-CHARPIEU, FRANCE) cemented into a cage (Kerboull cross, Burch-Schneider, or ARM rings). Clinical scores and radiological assessments were performed preoperatively and at the last follow-up. The main endpoints were revision surgery for aseptic loosening or recurring dislocation. With a mean follow-up of 10.7 years [2.1-16.2], 3 patients were reoperated because of aseptic acetabular loosening (3.9%) at 9.6 years [7-12]. Seven patients (9.45%) dislocated their hip implant, only 1 suffered from chronic instability (1.3%). Cup survivorship was 96.1% at 10 years. No sign of progressive radiolucent lines were found and bone graft integration was satisfactory for 91% of the patients. The use of a DM cup cemented into a metal ring during rTHA with complex acetabular bone loss was associated with low revision rates for either acetabular loosening or chronic instability at 10 years. That's why we also recommend DM cup for all high risk of dislocation situations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 3 - 3
23 Jun 2023
Berdis GE Couch CG Larson DR Bedard NA Berry DJ Lewallen DG Abdel MP
Full Access

Cup-cage constructs are one of several methods commonly used to treat severe acetabular bone loss during contemporary revision total hip arthroplasty. The purpose of this study was to provide a long-term results of the technique with emphasis on implant survivorship, radiographic results, and clinical outcomes for both full and half cup-cage reconstructions. We identified 57 patients treated with a cup-cage reconstruction for major acetabular bone loss between 2002–2012. All patients had Paprosky Type 2B through 3B bone loss, with 60% having an associated pelvic discontinuity. Thirty-one patients received a full cup-cage construct, and 26 a half cup-cage. Mean age at reconstruction was 66 years, 75% were female, and the mean BMI was 27 kg/m. 2. Mean follow-up was 10 years. The 10-year cumulative incidences of any revision were 14% and 12% for the full and half cup-cage construct groups, respectively. Of the 9 revisions, 3 were for dislocation, 2 for aseptic loosening and construct failure (both were pelvic discontinuities), 1 for adverse local tissue reaction, and 1 for infection with persistent pelvic discontinuity. The 10-year cumulative incidences of revision for aseptic loosening were 4.5% and 5% for the full and half cup-cage constructs, respectively. Of the unrevised cases, incomplete and non-progressive zone 3 radiolucent lines were observed in 10% of patients in each group. Three patients experienced partial motor and sensory sciatic nerve palsies (2 in the full and 1 in the half cup-cage group). Both the full and half cup-cage cohorts demonstrated significantly improved Harris hip scores. Full and half cup-cage reconstructions for major acetabular defects were successful at 10 years in regards to acetabular fixation without appreciable differences between the two techniques. However, zone 3 radiolucent lines were not uncommon in association with discontinuities, and dislocation continues to be a problem


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 52 - 52
19 Aug 2024
Malhotra R Parameswaran A Gautam D Batra S Apsingi S Kishore V Eachempati KK
Full Access

Chronic pelvic discontinuity (CPD) during revision hip arthroplasty is a challenging entity to address. The aim of this study was to evaluate the clinical and radiologic outcomes, and complications of the “acetabular distraction technique” for the management of CPD during revision hip arthroplasty. Patients with CPD, who underwent acetabular revision between 2014 and 2022 at two tertiary care centres, using an identical distraction technique, were evaluated. Demographic parameters, pre-operative acetabular bone loss, duration of follow-up, clinical and radiologic outcomes, and survivorship were evaluated. In all, 46 patients with a mean follow-up of 34.4 (SD=19.6, range: 24–120) months were available for evaluation. There were 25 (54.3%) male, and 21 (45.7%) female patients, with a mean age of 58.1 (SD=10.5, range: 40–81) years at the time of revision surgery. Based on the Paprosky classification of acetabular bone loss, 19 (41.3%), 12 (26.1%), and 15 (32.6%) patients had type 3b, 3a, and 2c defects. All patients were managed using the Trabecular Metal™ Acetabular Revision System; 16 patients required additional Trabecular Metal™ augments. The mean HHS improved from 50.1 (SD=7.6, range: 34.3 – 59.8) pre-operatively, to 86.6 (SD=4.2, range: 74.8 -91.8) at the last follow-up. Two patients (4.3 %) developed partial sciatic nerve palsy, two (4.3%) had posterior dislocation, and one (2.2%) required re-revision for aseptic loosening. Radiologically, 36 (78.3%) patients showed healing of the pelvic discontinuity. The Kaplan-Meier construct survivorship was 97.78% when using re-revision for aseptic acetabular loosening as an endpoint. The acetabular distraction technique has good clinical and radiologic outcomes in the management of CPD during revision hip arthroplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 54 - 54
23 Feb 2023
Boyle R Stalley P Franks D Guzman M Maher A Scholes C
Full Access

We present the indications and outcomes of a series of custom 3D printed titanium acetabular implants used over a 9 year period at our institution (Sydney, Australia), in the setting of revision total hip arthroplasty. Individualised image-based case planning with additive manufacturing of pelvic components was combined with screw fixation and off-the-shelf femoral components to treat patients presenting with failed hip arthroplasty involving acetabular bone loss. Retrospective chart review was performed on the practices of three contributing surgeons, with an initial search by item number of the Medicare Benefits Scheme linked to a case list maintained by the manufacturer. An analysis of indications, patient demographics and clinical outcome was performed. The cohort comprised 65.2% female with a median age of 70 years (interquartile range 61–77) and a median follow up of 32.9 months (IQR 13.1 - 49.7). The indications for surgery were infection (12.5%); aseptic loosening (78.1%) and fracture (9.4%), with 65.7% of cases undergoing previous revision hip arthroplasty. A tumour prosthesis was implanted into the proximal femur in 21.9% of cases. Complications were observed in 31.3% of cases, with four cases requiring revision procedures and no deaths reported in this series. Kaplan-Meier analysis of all-cause revision revealed an overall procedure survival of 88.7% at two years (95%confidence interval 69 - 96.2) and 83.8% (95%CI 62 - 93.7) at five years, with pelvic implant-specific survival of 98% (95%CI 86.6 - 99.7) at two and five year follow up. We conclude that an individualised planning approach for custom 3D printed titanium acetabular implants can provide high overall and implant-specific survival at up to five years follow up in complex cases of failed hip arthroplasty and acetabular bone loss


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 75 - 75
1 Nov 2021
Ramos A Matos M
Full Access

Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º inclination angle and 20º in the anteversion angle. Were developed five models with same initial bone, one with intact condition simulating the cartilage between bones and four with different bone loss around the acetabular component. These four models representing the evolution of bone support of acetabular components presented in the literature. The evolution of bone loss was imposed with a CAD CAM process in same iliac bone model. The models were instrumented with 5 rosettes in critical region at the cortical bone to measure the strain evolution along the process. Results. The results of strain gauges present the influence of acetabular component implantation, reducing the bone strains and presented the effect of the strain shielding. The acetabular component works as a shield in the load transfer. The critical region is the posterior region with highest principal strains and the strain effect was observed with different bone loss around acetabular component. The maximum value of principal strain was observed in the intact condition in the anterior region, with 950μ∊. In the posterior superior region, the effect of bone loss is more important presenting a reduction of 500% in the strains. The effect of bone loss is presented in the strains induced with acetabular implantation, in the first step of implantation the maximum strain was 950μ∊ and in the last model the value was 50μ∊, indicating lower press-fit fixation. Conclusions. The models developed allows study the effect of bone loss and acetabular implant fixation in the load transfer at the hip articulation. The results presented a critical region as the anterior-superior and the effect of strain shielding was observed in comparison with intact articulation. The results of press-fit fixation present a reduction of implant stability along bone loss. The process of bone fixation developed present some limitation associated to the bone adhesion in the interface, not considered. Acknowledgement. This work was supported by POCI-01-0145-FEDER-032486,– FCT, by the FEDER, with COMPETE2020 - (POCI), FCT/M


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 2 - 2
23 Jun 2023
Hube R Zimmerer A Nonnenmacher L Najfeld M Fischer M Wassilew GI
Full Access

The use of trabecular metal (TM.) shells supported by two TM augments in the footing technique has been described as a potential option for the treatment of Paprosky 3B acetabular defects. The aim of this study was to assess the mid implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. We undertook a retrospective, double-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the footing technique using a TM shell supported by two TM augments, for severe acetabular bone loss between 2007 and 2020. The mean age at the time of surgery was 62,9 (28 to 86) years. The mean follow-up was 5,4 (1,5 to 15) years. The cumulative mid survivorship of the implant with revision for any cause was 89%. 3 hips (7,6%) required further revision due to aseptic loosening, and 1 (2,8%) required revision for infection. The mean Harris Hip Score improved significantly from 48 (29 to 65) preoperatively to 79 points (62 to 98) at the latest follow-up (p < 0.001). The reconstruction of Paprosky 3B acetabular defects with TM shells and two augments in footing-technique showed excellent mid-term results. This technique appears to be a viable option for treating these defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 96 - 96
11 Apr 2023
Crippa Orlandi N De Sensi A Cacioppo M Saviori M Giacchè T Cazzola A Mondanelli N Giannotti S
Full Access

The computational modelling and 3D technology are finding more and more applications in the medical field. Orthopedic surgery is one of the specialties that can benefit the most from this solution. Three case reports drawn from the experience of the authors’ Orthopedic Clinic are illustraded to highlight the benefits of applying this technology. Drawing on the extensive experience gained within the authors’ Operating Unit, three cases regarding different body segments have been selected to prove the importance of 3D technology in preoperative planning and during the surgery. A sternal transplant by allograft from a cryopreserved cadaver, the realization of a custom made implant of the glenoid component in a two-stage revision of a reverse shoulder arthroplasty, and a case of revision on a hip prosthesis with acetabular bone loss (Paprosky 3B) treated with custom system. In all cases the surgery was planned using 3D processing software and models of the affected bone segments, printed by 3D printer, and based on CT scans of the patients. The surgical implant was managed with dedicated instruments. The use of 3D technology can improve the results of orthopedic surgery in many ways: by optimizing the outcomes of the operation as it allows a preliminary study of the bone loss and an evalutation of feasibility of the surgery, it improves the precision of the positioning of the implant, especially in the context of severe deformity and bone loss, and it reduces the operating time; by improving surgeon training; by increasing patient involvement in decision making and informed consent. 3D technology, by offering targeted and customized solutions, is a valid tool to obtain the tailored care that every patient needs and deserves, also providing the surgeon with an important help in cases of great complexity


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 73 - 73
23 Jun 2023
Sheth N Bostrom M Winzenrieth R Humbert L Pearman L Caminis J Wang Y Boxberger J Krohn K
Full Access

To evaluate the effects of 6 and 18 months of abaloparatide (ABL) compared with placebo (PBO) on bone mineral density (BMD) in the acetabular regions of postmenopausal women with osteoporosis (OP). Acetabular bone loss, as may occur in OP, increases risk of acetabular fragility fractures. a. In total hip arthroplasty (THA), low acetabular BMD adversely affects primary stability, osseointegration, and migration of acetabular cups. c. ABL is an osteoanabolic agent for the treatment of men and postmenopausal women with OP at high risk for fracture. Effects of ABL on acetabular BMD are unknown. Hip DXA scans were obtained at baseline, 6, and 18 months from a random subgroup of postmenopausal women (aged 49–86 y) from the phase 3 ACTIVE trial randomized to either ABL 80 µg/d or PBO (n=250/group). Anatomical landmarks were identified in each DXA scan to virtually place a hemispherical shell model of an acetabular cup and define regions of interest corresponding to DeLee & Charnley zones 1 (R1), 2 (R2), and 3 (R3). BMD changes compared to baseline were calculated for each zone. Statistical P values were based on a repeated mixed measures model. BMD in all zones were similar at baseline in the ABL and PBO groups. BMD significantly increased in the ABL group at 6 and 18 months compared with PBO (all P<0.0001 vs PBO). BMD in the PBO group was relatively stable over time. ABL treatment resulted in rapid and progressive increases in BMD of all 3 acetabular zones. Increasing acetabular BMD has the potential to improve acetabular strength, which may reduce risk of acetabular fragility fractures. In bone health optimization prior to THA, increased acetabular BMD via ABL may provide better primary stability and longevity of acetabular cups in postmenopausal women with OP