Autogenous bone grafting limitations have motivated the development of Tissue-Engineered (TE) biomaterials that offer an alternative as bone void fillers. However, the lack of a blood supply within implanted constructs may result in avascular necrosis and construct failure. 1. The aim of this project was to investigate the potential of novel TE constructs to promote
Purpose: To evaluate the
Prolonged presence of VEGF (released from gelatin microspheres) led to a significant increase in scaffold vascularization when applied in vivo. Bioprinted scaffolds with regional VEGF presence retained their architecture and regional vessel formation occurred. Tissue-engineered bone constructs need timely vascularization for optimal performance in regeneration. A potent stimulus of vascularization is vascular endothelial growth factor (VEGF), a factor with a short half-life time. Controlled release of VEGF from gelatin microparticles (GMPs) was investigated as a means to prolong VEGF presence at the preferred location within bioprinted scaffolds, and study subsequent vascularization.Summary Statement
Introduction
Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of synthetic bone substitutes focus on improving their osteoinductive properties. Whereas osteoinductivity has been demonstrated with ceramics, it is still a challenge in case of polymeric composites. One of the approaches to improve the regenerative properties of biomaterials, without changing their synthetic character, is the addition of inorganic ions with known osteogenic and angiogenic properties. We have previously reported that the use of a bioactive composite with high ceramic content composed of poly(ethyleneoxide terephthalate)/poly(butylene terephthalate) (1000PEOT70PBT30, PolyActive, PA) and 50% beta-tricalcium phosphate (β-TCP) with the addition of zinc in a form of a coating of the TCP particles can enhance the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) (3). To further support the regenerative properties of these scaffolds, inorganic ions with known angiogenic properties, copper or cobalt, were added to the coating solution. β-TCP particles were immersed in a zinc and copper or zinc and cobalt solution with a concentration of 15 or 45 mM. 3D porous scaffolds composed of 1000PEOT70PBT30 and pure or coated β-TCP were additively manufactured by 3D fibre deposition. The osteogenic and angiogenic properties of the fabricated scaffolds were tested in vitro through culture with hMSCs and human umbilical vein endothelial cells, respectively. The materials were further evaluated through ectopic implantation in an in vivo mini-pig model. The early expression of relevant osteogenic gene markers (collagen-1, osteocalcin) of hMSCs was upregulated in the presence of lower concentration of inorganic ions. Further analysis will focus on the evaluation of ectopic bone formation and
Introduction. Autologous fat grafting has favourable potential as a regenerative strategy and is the current gold-standard to repair large contour defects, as needed in breast reconstruction after mastectomy and traumatic soft tissue reconstruction. Clinically, there is a limit on the volume of lipoaspirate which can be utilised to repair a soft-tissue defect. Surgical complications are the result of poor structural fidelity of lipoaspirate and graft resorption as a filling material and are hindered further by poor graft
Neoangiogenesis drives the replacement of mineralised cartilage by trabecular bone during bone growth regulated by molecules like e.g. VEGF, OPG and RANKL. The Heparan sulfate proteoglycan Syndecan-1 (Sdc1) plays a role in the interaction of osteoclasts and osteoblasts and the development of blood vessels. We expected Sdc1 to have an influence on bone structure and vessel development. Therefore, bone structure and angiogenesis at the growth plate in mice was compared and the influence of Syndecan-1 deficiency was characterised. Animals: Femura of male and female C57BL/6 WT (5♀, 6♂) and Sdc1-/- (9♀, 5♂) mice were used for native bone analysis at 4 month age. Histology: Bone structure was analysed using microCT scans with a resolution of 9µm.
Introduction: The lumbosacral medulla is vascularized by the Adamkiewicz arteria which irrigates the anterior spinal arteria. Occlusion or section of the Adamkiewicz arteria may induce an ischemia of the medulla during anterior or transforaminal spine surgery. An angiography allows to determine the exact topography of this artery. The purpose of this study was to describe its preoperative topography and to analyze the impact of angiography on the surgical strategy. Methods: In this retrospective study, 100 preoperative medullar angiographies, performed by a vascular radiologist between january 1998 and august 2007, were reviewed. Surgical indications were: 50 vertebrectomies in tumors, 20 anterior fusions in dorsolumbar fractures, 10 anterior fusions in malunions, 10 anterior releases in scoliosis, 3 transpedicular osteotomies, 7 disc hernias (T7-L4). The level and the side of foraminal entrance of the Adamkiewicz arteria and collateral arterias irrigating the anterior spinal arteria were analyzed. We looked for the occurence of postoperative ischemic signs of the medulla. Modifications of surgical planning because of Adamkiewicz’ arteria topography were noted. The possibilities of preoperative tumor embolisation were analyzed. Results: The Adamkiewicz arteria was always localized between T8 and L3. It was present at the foraminal levels L1/L2 or L2/L3 in 48% of the cases. The left side was concerned in 65% of the cases. A modification of the surgical strategy was noted in 16% of the cases: 12 side changements of operative approach, 4 contra-indications for anterior surgery. An ischemic syndrome of the anterior lumbosacral medulla were not found. In the group of tumors, the preoperative angiography allowed to perform a selective embolisation of tumor vessels in 80% of the cases. In all other cases, the tumor
Purpose: We report an retrospective analysis of 33 patients with neurological para-osteo-arthroplathy of the hip who underwent surgery between 1985 and 1999. Material and methods: Forty-three hips were operated in 33 patients aged 14 to 50 years at the time of the accident. Twenty-two patients had head trauma, two had spinal cord injury and three both. The causal mechanism was: trauma 27 patients, rupture of an inta-cranial aneurysm in five patients, widespread burns one patient. Localisations were inferome-dial 14 patients, anterior 10 patients, posterior two patients, circumferential five patients. Surgical care included complete resection in 30 cases, resection of the head and neck in six, and implantation of a total hip arthroplasty in seven. There were several perioperative accidents: two vessel injuries, two persistent bleedings, one haematoma, eight superficial infections, six recurrences, one ankylosis and one death. Functional outcome was assessed on the basis of gain in amplitude of hip flexion. Results: Analysis was possible for 37 of the 43 hips. Outcome was good in 18 (flexion gain greater than 90°), fair in nine (flexion gain from 60 to 90°), poor in ten (flexion gain less than 60°). Complete resection gave better results (61.5%). Total hip arthroplasty gave mediocre results. The best results were obtained with resection for the inferomedial and anterior localisations. Discussion: The decision for surgery should be discussed in light of the objectives to be achieved. We present our surgical strategy as a function of the localisation. We advocate systematic verification of the
Objectives. An experimental piglet model induces avascular necrosis (AVN)
and deformation of the femoral head but its secondary effects on
the developing acetabulum have not been studied. The aim of this
study was to assess the development of secondary acetabular deformation
following femoral head ischemia. Methods. Intracapsular circumferential ligation at the base of the femoral
neck and sectioning of the ligamentum teres were performed in three
week old piglets. MRI was then used for qualitative and quantitative
studies of the acetabula in operated and non-operated hips in eight
piglets from 48 hours to eight weeks post-surgery. Specimen photographs and
histological sections of the acetabula were done at the end of the
study. . Results. The operated-side acetabula were wider, shallower and misshapen,
with flattened labral edges. At eight weeks, increased acetabular
cartilage thickness characterised the operated sides compared with
non-operated sides (p <
0.001, ANOVA). The mean acetabular width
on the operated side was increased (p = 0.015) while acetabular depth
was decreased anteriorly (p = 0.007) and posteriorly (p = 0.44).
The cartilage was thicker, with delayed acetabular bone formation,
and showed increased
Purpose: Reconstruction after resection of malignant bone tumours remains a major challenge. Free vascularised fibular grafts may be a useful alternative in this indication. Material: Thirty children (nine girls, twenty-one boys) were treated between 1993 and 2000. Mean age was eleven years. Tumour histology was: osteogenic osteo-sarcoma (n=20), Ewing tumour (n=5), justacortical osteosarcoma (n=3), synovialosarcoma (n=1), and chondrosarcoma (n=1). Tumours were located in the femur (n=17), the tibia (n=6), the humerus (n=5), the radius (n=1), and the distal fibular (n=1). The length of resection varied from 100 mm to 260 mm (mean 160 mm). Internal fixation was used in 27 cases and external fixation in three. The adjacent epiphysis was preserved in 22 cases and initial arthrodesis was performed in eight. Method: Patients were followed clinically and radiographically. A bone scintigram was obtained in all patients at least once during the postoperative period. Radiological assessment was based on the hypertrophy index of the graft using the method described by DeBoer and Wood. Functional outcome was assessed using the Enneking criteria. Results: Mean follow-up was 51 months (range 2 – 9 years). Early amputation was required in two patients due to local ocological complications. One patient died at eight months follow-up due to lung metastasis. Among the remaining 27 patients, primary bone healing was achieved in 22. The five other patients exhibited clear signs of non-vascularisation. Successful healing was achieved in four of these patients after a complementary autologous graft. All cases of stress fracture healed after simple immobilisation. The twenty-two patients who achieved primary bone healing developed a hypertrophic graft (mean 61%, range 22 – 190%). Graft hypertrophy was not observed in the five cases requiring a secondary graft after the scintigram demonstrated lack of
Previous clinical studies have shown the efficacy of a foreign body-induced membrane combined with bone autograft for the reconstruction of traumatologic or pathologic large bone defects or, bone non union. This membrane, rich in mesenchymal stromal cells (MSC), avoids bone autograft resorption and promotes consolidation by revascularisation of the bone and secretion of growth factors. Reconstruction requires two different surgical stages: firstly, insertion of a cement spacer in the defect, and secondly, removal of the spacer, preservation of the foreign body-induced membrane and filling of the cavity by bone autograft. The optimal time to perform the second surgical stage remains unclear. So, we aimed to correlate bone healing and, phenotype and function of cells isolated from the induced membrane, in patients whose second surgery was performed on average after 6 months (i.e. beyond the recommended time of one month). Cell phenotype was determined by flow cytometry and cell function by: alkaline Phosphatase enzyme activity, secretion of calcium and von Kossa staining. Second, using histological and immunohistochemistry studies, we aimed to determine the nature and function of induced membrane over time. Seven patients were included with their consent. Results showed Treated patients achieved in all cases bone union (except for one patient) and in in vitro and histology and immunohistochemistry gave some indications which need to be completed in the future. First, patient age seemed to be an indicator of bone union speed and recurrent infection, appeared to influence in vitro MSC osteogenic potential and induced membrane structure. Second, we reported, in bone repair situation, the commitment over time in osteogenic lineage of a surprising multipotent tissue (induced membrane) able of
Background. Tissue engineering strategies to heal critical-size bone defects through direct bone formation are limited by incomplete integration of grafts with host bone and incomplete
Background. Smoking has been associated with poor tissue oxygenation and
Purpose of the study: Platelet rich fibrin (PRF) favours proliferation of tenocytes and synthesis of extracellular matrix. The purpose of this study was to demonstrate the technical feasibility of adding a PRF envelope during arthroscopic rotator cuff repair to favour short-term
Purposes of the study. To assess the performance of an acellular synthetic scaffold in the treatment of painful partial meniscal tissue loss. Methods. Subjects recruited (n=52) had irreparable medial or lateral meniscus partial meniscus loss, intact rim, presence of both horns and a stable well aligned knee. Diagnostic imaging was used to assess tissue ingrowth at 3 months post-implantation by evidence of
Because of the lack of a suitable in vivo model for giant cell tumors of bone little is known about their biological behavior and mechanisms of metastasis. No existing cell line contains all tumor components, so that testing of anti tumor agents is hardly possible. We therefore modified the chick chorio-allantoic membrane (CAM) assay for giant cell tumor of bone (GCTB). Out of tumor tissue obtained during surgery of 5 patients a solution was produced. The solute was grafted onto the CAM at day 10 of embryonic development. The growth process was monitored by daily observation and photo documentation using in vivo microscopy. After 5 to 6 days of tumor growth the samples were fixed in formalin and further analyzed using standard histology (hematoxylin and eosin stains). The tissue solute of all 5 patients formed solid tumors when grafted to the CAM. In vivo microscopy and standard histology revealed a rich
In bone infections, it is of fundamental importance to wrap any orthopaedic surgical procedure in healthy vascularised soft tissue, in order to allow good healing and to prevent infection recurrence. Vitality of soft tissues around the knee joint can be easily jeopardized in patients undergoing multiple surgical operations as in case of infected arthroprostheses. In addition, there are very few local options in the soft tissue reconstruction of this area, due to the fact that the
Infection is a common complication of severe open fractures and compromises bone healing. The present standard of care is a two-stage approach comprising of initial placement of antibiotic-impregnated PMMA beads to control infection followed later by bone grafting. Although the systemic antibiotics and PMMA/antibiotic beads control the infection initially, there are often residual bacteria within the wound. After grafting and definitive closure, the implanted graft is placed in an avascular defect and could function as a nidus for infection. Bioactive porous polyurethane (PUR) scaffolds have been shown to improve bone healing by delivering recombinant human bone morphogenetic protein-2 (BMP-2) and reduce infection by delivering antibiotics. The release kinetics of the BMP-2 were an initial burst to recruit cells and sustained release to induce the migrating cells. The Vancomycin (Vanc) release kinetics were designed to protect the graft from contamination until
Introduction. Analysing the results of angular stable osteosynthesis in large groups of patients can give us an indication of the possibilities and limitations of both angular stable nailing and plating. Material and Methods. Fractures have been classified using the AO-classification system. To judge
Introduction: Increased cell senescence has been reported in the human intervertebral disc (IVD) and was associated with degenerative pathology, particularly herniation. Increased IVD innervation and blood vessel ingrowth is associated with disc degeneration and the development of back pain. This preliminary study examines whether there is a relationship between the prevalence of senescent IVD cells and the extent to which the tissue is innervated and/or vascularised. Methods: Specimens of herniated IVD (n=16 patients: aged 36–71) were stained for senescence associated β-galactosidase activity (SA β-gal), then snap frozen and cryosectioned prior to immunolocalisation procedures to detect nerves (NF200) or blood vessels (CD34). Stained sections were counterstained with DAPI to reveal cell nuclei. The proportion of SA β-gal +ve cells was scored and the extent of neural and blood vessel ingrowth semi-quantitated. Results: The proportion of SA β gal +ve IVD cells ranged from 6% – 91% (median=16%) and was significantly correlated with age. The degree of neural or blood vessel ingrowth ranged from tissue which contained numerous (i.e. ≥10) positive cells/cell processes to tissue which was completely aneural or avascular. However, there was no clear relationship between the presence of SA β-gal +ve IVD cells and IVD innervation or