Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 303 - 303
1 Sep 2005
Edwards C Hill P Scammell B Bayston R
Full Access

Introduction and Aims: A phenotypic and proteomic approach has identified novel targets for the development of a DNA vaccine to prevent Staphylococcus aureus infection in orthopaedics. Approximately 1% of joint replacement operations are complicated by infection. Thirty percent of these infections are due to S.aureus, which is often difficult to treat because of antibiotic resistance. As treatment of these infections is challenging, prevention with a vaccine is a very attractive option. Method: To infect a joint replacement, bacteria must first adhere to its surface. This adherence is mediated by specific adhesion proteins; the expression of which is controlled by virulence regulator genes within the bacterial cell. A DNA vaccine is being developed which targets this regulatory apparatus, thus preventing bacterial adhesion, allowing the immune system to rapidly clear any potential S.aureus infection. Results: Mutations of the agr,sar and sae virulence regulator genes have been made. Their properties have been explored using a flow cell system, which uses a scanning confocal laser microscope and image analysis software to accurately provide quantitative data in real-time of biofilm formation. We have shown that the sae mutant does not form biofilm in the same was as wild-type S.aureus. We have also shown that it does not adhere to steel as well as its wild-type counterpart. Conclusion: For such a dramatic difference in biofilm forming properties to be evident, there must be a difference in the adhesion proteins produced by the wild-type and the mutant bacteria. Gel-electrophoresis has compared protein expression of sae mutant and wild-type bacteria and identified differences. Those proteins which are not expressed in the non-biofilm-forming mutant are sequenced and from the protein sequences, DNA sequences are identified that will form part of the candidate DNA vaccine


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 59 - 60
1 Mar 2010
Edis* E Scammell B Bayston R
Full Access

Prosthetic joint infection (PJI) is an increasing problem and management commonly involves prosthesis removal with serious consequences. Biofilm-forming staphylococci are the most common causative organisms with Staphylococcus aureus being most virulent and methicillin-resistant Staphylococcus aureus (MRSA) more than doubling the infection mortality rate. Bacterial adhesion is an essential primary event in biofilm formation and infection establishment. The development of a novel combination vaccine programme to prevent staphylococcal PJI by directing antibody against factors involved in adhesion and biofilm formation, and investigation of S. aureus binding-domains as potential vaccine components for adhesion inhibition is described. Selected target antigens included the S. aureus fibronectin-binding protein (FnBP) and iron-regulated surface determinant (IsdA), which have been shown to be important for infection establishment and predominantly bind to host fibronectin and fibrinogen respectively. Escherichia coli clones harbouring recombinant S. aureus binding-domain DNA sequences were used for expression and purification of antigen domains. In vitro antibody evaluation determined whether immune inhibition of bacteria - ligand binding can significantly impact on attachment to plasma-conditioned biomaterial (in presence of other bacterial ligands). Adhesion of homologous and heterologous (MRSA PJI isolate) S. aureus to plasma-conditioned steel was significantly reduced (approximately 50 percent average reduction, p < 0.0001) when pre-exposed to anti-rFnBP-A antiserum (with pre-immune serum control) that was 50-fold more dilute than the actual titre from immunisation. Inhibition was related to ligand presence but not staphylococcal Protein A, and reduced adhesion was not observed with the mutant strain, indicating specific inhibitory antibody involvement, and demonstrating for the first time the potential of rFnBP-A for prevention of S. aureus PJI. Adhesion-inhibitory activity was also observed with a purified IgG-fraction of rIsdA antiserum but this activity appeared to be masked by non-IsdA - related interactions when non-IgG - purified antiserum was assessed


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 16 - 16
1 Sep 2014
Obrien M Firth G Ramguthy Y Robertson A
Full Access

Introduction. A previous study in South Africa showed the prevalence of HIV related osteo-articular sepsis in children to be around 20% with a high prevalence of Streptococcus pneumoniae (38%) in HIV positive patients. This initial study was conducted at the same time that the polyvalent S pneumoniae vaccine was introduced to the EPI in South Africa (2009). The aim of the current study was to review the epidemiology of osteo-articular infections at two hospitals after the introduction of this vaccine. Methods. A retrospective review of patients presenting to two hospitals, between July 2009 and January 2013, with acute osteo-articular sepsis and pus at arthrotomy. The NHLS laboratory results were reviewed for microscopy, culture and sensitivity as well as white cell count (WCC), C reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Results. A total of 100 cases of acute osteo-articular sepsis were identified during this period. The prevalence of HIV was 15%. The most common bacterial isolate was Staphylococcus aureus (22%). There were no Streptococcus pneumoniae isolates grown in either of the two groups. There was no difference in the WCC, CRP and ESR between the HIV negative and positive groups. Conclusion. We have seen a dramatic shift in the bacteriology in paediatric patients with osteo-articular sepsis since the original study in 2009. The incidence of HIV in our study population has declined. This may be due to the introduction of mother to child transmission programmes and increased use of anti-retrovirals. Staphylococcus aureus is now the most common isolated organism in patients with osteo-articular sepsis, regardless of HIV status. The empiric antibiotic therapy of choice in paediatric patients with osteo-articular sepsis remains Cloxacillin. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 291 - 291
1 May 2009
Edis E Scammell B Bayston R
Full Access

Background: Prosthetic joint infection (PJI) is most commonly caused by skin-derived, biofilm-forming staphylococci, with Staphylococcus aureus being most virulent and MRSA becoming a substantial problem. Cephaloporins are almost universally used as prophylaxis against PJI, yet Methicillin - resistant S aureus (MRSA) is becoming increasingly common in hospitals, nursing homes and now in the community. Such strains are not susceptible to cephalorsporins or to a range of other antimicrobials. In view of this increasing antibiotic resistance, an alternative approach to preventing S. aureus PJI is needed, and we propose that vaccination is a promising approach. Having regard to the distinct pathogenesis of PJI, this must target key events in infection establishment, such as adhesion to the implant, via the plasma conditioning film, mediated by bacterial binding proteins. It must also have the potential to protect against all S. aureus regardless of antibiotic resistance profile. Fibronectin-binding protein-A (FnBP-A) is one example, but the potential of FnBP-A as a PJI vaccine candidate has not been thoroughly investigated and data in previous literature are contradictory. Methods: Here, polyclonal rabbit antibody against recombinant(r) FnBP-A binding domain was produced and investigated for the first time for activity against S. aureus adhesion to rabbit plasma-conditioned steel coupons in-vitro. Results: The adhesion of homologous S. aureus 8325-4 (fnbA+, fnbB+), and a heterologous MRSA arthroplasty isolate was significantly (p < 0.05) reduced when pre-exposed to anti-FnBP-A antiserum (un-purified and IgG-purified), compared to pre-exposure with pre-immune serum. This was not observed with mutant strain S. aureus DU5883 (fnbA?, fnbB?), indicating the involvement of FnBP-A – specific inhibitory antibody (IgG). Results clearly demonstrate the potential of rFnBP-A binding domain as a vaccine antigen for prevention of PJI and merit further investigation. The implications of this are that vaccination using this peptide might be expected to protect patients about to undergo elective arthroplasty from infection with S aureus whatever its antibiotic susceptibility, so offering a realistic solution to the problem of increasing resistance


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 3 - 3
1 Jan 2003
Aladin A Nagar S Bayston R Scammell B
Full Access

Most infections in arthroplasty are caused by staphylococci, about half being due to S. aureus. One of the most worrying aspects of this organism, and particularly of MRSA, is increasing multiple drug resistance, so that antimicrobial prophylaxis is probably already compromised. Vaccination offers a novel approach to overcome this. Detailed consideration of the pathogenesis of prosthesis–related infection indicates that a) prosthetic material rapidly becomes coated after implantation with plasma–derived conditioning film, and b) attachment of the bacteria to the conditioning film, by means of specific bacterial surface binding proteins, is an essential primary event. We hypothesise that antibodies to these binding proteins will block bacterial adhesion to the prosthesis, so reducing the incidence of infection. The aim of this research was to determine the effect of specific antibodies to two binding proteins (fibronectin - and fibrinogen–binding proteins, Fnbp and Fgbp respectively) on bacterial adherence to orthopaedic biomaterials coated with plasma conditioning film.

Antibodies to recombinant sequences of Fnbp and Fgbp were raised in rabbits. A strain of S. aureus bearing a genetically inserted fluorescent reporter (GFP) was used. Orthopaedic biomaterials (steel, titanium and PMMA) were coated with FFP–derived conditioning film, placed in a specially–designed flow cell and exposed to a flow of S. aureus for 3h. Images were captured every 15min and analysed for adherent bacteria using image analysis software. The experiment was repeated in the presence of the antibodies and the results compared.

Each antibody reduced the number of bacteria binding to all three materials by greater than 50%. Combining the two antibodies gave similar results to those when they were used individually.

These preliminary results suggest that while further research is required, vaccination aimed at blocking bacterial attachment to conditioning film on implanted prostheses might reduce the incidence of S. aureus infection in arthroplasty. If so, this would apply even to MRSA. Questions remaining to be addressed include the clinical relevance of a 50% reduction in attachment, and future research will attempt to link this to a reduction in infection.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 323 - 329
10 May 2021
Agrawal Y Vasudev A Sharma A Cooper G Stevenson J Parry MC Dunlop D

Aims. The COVID-19 pandemic posed significant challenges to healthcare systems across the globe in 2020. There were concerns surrounding early reports of increased mortality among patients undergoing emergency or non-urgent surgery. We report the morbidity and mortality in patients who underwent arthroplasty procedures during the UK first stage of the pandemic. Methods. Institutional review board approval was obtained for a review of prospectively collected data on consecutive patients who underwent arthroplasty procedures between March and May 2020 at a specialist orthopaedic centre in the UK. Data included diagnoses, comorbidities, BMI, American Society of Anesthesiologists grade, length of stay, and complications. The primary outcome was 30-day mortality and secondary outcomes were prevalence of SARS-CoV-2 infection, medical and surgical complications, and readmission within 30 days of discharge. The data collated were compared with series from the preceding three months. Results. There were 167 elective procedures performed in the first three weeks of the study period, prior to the first national lockdown, and 57 emergency procedures thereafter. Three patients (1.3%) were readmitted within 30 days of discharge. There was one death (0.45%) due to SARS-CoV-2 infection after an emergency procedure. None of the patients developed complications of SARS-CoV-2 infection after elective arthroplasty. There was no observed spike in complications during in-hospital stay or in the early postoperative period. There was no statistically significant difference in survival between pre-COVID-19 and peri-COVID-19 groups (p = 0.624). We observed a higher number of emergency procedures performed during the pandemic within our institute. Conclusion. An international cohort has reported 30-day mortality as 28.8% following orthopaedic procedures during the pandemic. There are currently no reports on clinical outcomes of patients treated with lower limb reconstructive surgery during the same period. While an effective vaccine is developed and widely accepted, it is very likely that SARS-CoV2 infection remains endemic. We believe that this report will help guide future restoration planning here in the UK and abroad. Cite this article: Bone Jt Open 2021;2(5):323–329


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 34 - 34
1 Nov 2018
Lian W Ko J Wang F
Full Access

Sclerostin (SOST) is an endogenous inhibitor of Wnt/β-catenin signalling pathway to impair osteogenic differentiation and bone anabolism. SOST immunotherapy like monoclonal antibody has been observed to control bone remodeling and regeneration. This study is aimed to develop a SOST vaccine and test its protective effects on estrogen deficiency-induced bone loss in mice. Gene sequences coded SOST peptide putative targeting Wnt co-receptor LRP5 were cloned and constructed into vectors expressing Fc fragment to produced SOST-Fc fusion protein. Mice were subcutaneously injected SOST-Fc to boost anti-SOST antibody. Bone mineral density, microstructure, and mechanical property were quantified using μCT scanning and material testing system. Serum bone formation and resorption markers and anti-SOST levels were measured using ELISA. SOST-Fc injections significantly increased serum anti-SOST antibody levels but reduced serum SOST concentrations. SOST-Fc vaccination significantly reduced estrogen deficiency-induced serum bone resorption markers CTX-1 increased serum bone formation marker osteocalcin. Of note, it significantly alleviated the severity of estrogen-induced loss of bone mineral density, trabecular morphometric properties, and biomechanical forces of bone tissue. Mechanistically, SOSF-Fc vaccination attenuated trabecular loss histopathology and restored immunostaining of Wnt pathway like Wnt3a, β-catenin, and TCF4 in bone tissue along with increased serum osteoclast inhibitor OPG levels but decreased serum osteoclast enhancer RANKL concentrations. Taken together, SOST-Fc vaccination boosts anti-SOST antibody to neutralize SOST and mitigates the estrogen deficiency-induced bone mass and microstructure deterioration through preserving Wnt signalling. This study highlights an innovative remedial potential of SOST vaccine for preventing osteoporosis


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 70 - 71
1 Mar 2008
Trammell R Allan D Moticka E
Full Access

SEREX was used to identify candidate tumor antigens in the nonimmunogenic fibrosarcoma (NFSA) tumor model. One of the six clones identified was of particular interest. NFSA-5 was identified as the receptor for hylaronan-acid-mediated motility (RHAMM), which is involved in cell growth and metastasis. RHAMM is expressed in a variety of human tumors. RHAMM is differentially expressed, with significant levels not found in normal tissues other than testis, placenta, and thymus. Therefore, RHAMM may be an appealing target for human tumor vaccines. The identification of murine homologs to human tumor antigens may aid in the preclinical development of human tumor vaccines. The goal of our studies was to use serological analysis of antigens by recombinant expression cloning (SEREX) to identify candidate tumor antigens in a nonimmunogenic murine fibrosarcoma model. SEREX provides a rapid means of identifying candidate tumor antigens in murine cancer models. The identification of murine homologs to human tumor antigens may aid in the preclinical development of human tumor vaccines. The SEREX approach included construction of a cDNA expression library from NFSA tumors followed by immunoscreening of the library with sera from C3H mice growing NFSA tumors. The nucleotide sequence of insert cDNA was determined for positive clones. Sequence alignments were performed with BLAST software on GenBank database. Six positive clones were identified. Two clones coded for proteins with known expression in normal tissues. Two clones represented heat-shock proteins, known to be upregulated in human and murine tumors. Two of the clones were of particular interest. Clone NFSA-1 was the homolog to NY-REN-58, an antigen previously identified by SEREX analysis of renal cell carcinoma patients. NFSA-5 was identified as the receptor for the hylaronan-acid-mediated motility (RHAMM), which is involved in cell growth and metastasis. RHAMM was recently identified as a leukemia-associated antigen and is expressed in a variety of human solid tumors including renal cell carcinoma, breast carcinoma, and ovarian carcinoma. RHAMM is differentially expressed, with significant levels not found in normal tissues other than testis, placenta, and thymus. Therefore, RHAMM may be an appealing target for human tumor vaccines. Funding: This study was supported by a grant received from the William E. McElroy Charitable Foundation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_12 | Pages 2 - 2
1 Oct 2021
Hall A Clement N Ojeda-Thies C Maclullich A Toro G Johansen A White T Duckworth A
Full Access

This international multicentre retrospective cohort study aimed to assess: 1) prevalence of COVID-19 in hip fracture patients, 2) effect on mortality, and 3) clinical factors associated mortality among COVID-19-positive patients. A collaboration among 112 centres in 14 nations collected data on all patients with a hip fracture between 1st March-31st May 2020. Patient, injury and surgical factors were recorded, and outcome measures included admission duration, COVID-19 and 30-day mortality status. There were 7090 patients and 651 (9.2%) were COVID-19-positive. COVID-19 was independently associated with male sex (p=0.001), residential care (p<0.001), inpatient fall (p=0.003), cancer (p=0.009), ASA grade 4–5 (p=0.008; p<0.001), and longer admission (p<0.001). Patients with COVID-19 had a significantly lower chance of 30-day survival versus those without (72.7% versus 92.6%, p<0.001), and COVID-19 was independently associated with increased 30-day mortality risk (p<0.001). Increasing age (p=0.028), male sex (p<0.001), renal (p=0.017) and pulmonary disease (p=0·039) were independently associated with higher 30-day mortality risk in patients with COVID-19 when adjusting for confounders. The prevalence of COVID-19 in hip fracture patients was 9% and was independently associated with a three-fold increased 30-day mortality risk. Clinical factors associated with mortality among COVID-19-positive hip fracture patients were identified for the first time. This is the largest study, and the only global cohort, reporting on the effect of COVID-19 in hip fracture patients. The findings provide a benchmark against which to determine vaccine efficacy in this vulnerable population and are especially important in the context of incomplete vaccination programmes and the emergence of vaccine-resistant strains


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 71 - 71
1 Nov 2018
O'Cearbhaill E
Full Access

Efficient, repeatable and reliable insertion of microneedles into skin is paramount to ensure efficacious drug and vaccine delivery, as well as effective microneedle-based biosensing. Through maintaining robust mechanical adhesion, this microneedle platform offers significant potential in therapeutic delivery and longitudinal wearable applications. Here, we have shown that an angled microneedle design, which is conducive to self-administration, has the potential to address key limitations in existing microneedle technology


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 77 - 77
1 Dec 2015
Toscano M De Vecchi E Drago L
Full Access

The role of biofilm in pathogenesis of several chronic human infections is widely accepted, as this structure leads pathogens to persist among the human body, being protected from the action of antibacterial molecules and drugs (1). It has been estimated that up to 65% of bacterial infections are caused by microorganisms growing in biofilms (2). Moreover, biofilm is involved in device-related orthopaedic bacterial infections, which are unaffected by vaccines and antibiotic therapies, constituting a serious problem for the human health care. The aim of the present work was to evaluate the anti-biofilm action of a selected and patented lactobacillus strain (MD1) supernatant, both on the in-formation- biofilm and on mature biofilm produced by pathogenic bacteria. MD1 was grown in BHI for 48 h at 37°C. After incubation, the sample was centrifuged for 5’ for 14,000 × g and the supernatant previously filtered and treated in order to obtain the anti-biofilm compounds (Special Supernatant – SS) was collected. Staphylococcus aureus and Pseudomonas aeruginosa strains were grown in BHI for 24h at 37°C. The anti-biofilm ability of the tested SS – lactobacillus strain was evaluated by a spectrophotometric method according to Christensen at al., following the incubation of pathogens and the “mature biofilm” with the lactobacillus supernatant. Confocal Laser Scanning Microscopy was used to confirm the data obtained from Crystal Violet Assay. After the incubation of the SS with pathogens and mature biofilm, the formation of biofilm was inhibited and a significant disruption of the mature biofilm was observed. Interestingly, the same properties were observed also when the SS pH was neutralized to pH 6.5. In particular, the reduction of biofilm production and the disruption of mature biofilm was about 50–70% for all microorganisms. The SS lactobacillus strain MD1 exhibited a relevant antibiofilm action against mature and in-formation-biofilm produced by S. aureus and P. aeruginosa strains tested in the study. Moreover, the antibiofilm action has been observed to be pH-independent, as when the supernatant was neutralized to pH 6.5, the reduction of pathogenic biofilm has been still observed. These promising results highlighted the possibility to use this SS-lactobacillus anti-biofilm property to develop a cost-effective and safety treatment able to reduce the impact of pathogenic biofilm on device-related orthopaedic bacterial infections


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims

Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive.

Methods

We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 409 - 412
22 Jun 2022
Tsang SJ Ferreira N Simpson AHRW


Bone & Joint Research
Vol. 11, Issue 6 | Pages 342 - 345
1 Jun 2022
Hall AJ Clement ND MacLullich AMJ Simpson AHRW White TO Duckworth AD

Research into COVID-19 has been rapid in response to the dynamic global situation, which has resulted in heterogeneity of methodology and the communication of information. Adherence to reporting standards would improve the quality of evidence presented in future studies, and may ensure that findings could be interpreted in the context of the wider literature. The COVID-19 pandemic remains a dynamic situation, requiring continued assessment of the disease incidence and monitoring for the emergence of viral variants and their transmissibility, virulence, and susceptibility to vaccine-induced immunity. More work is needed to assess the long-term impact of COVID-19 infection on patients who sustain a hip fracture. The International Multicentre Project Auditing COVID-19 in Trauma & Orthopaedics (IMPACT) formed the largest multicentre collaborative audit conducted in orthopaedics in order to provide an emergency response to a global pandemic, but this was in the context of many vital established audit services being disrupted at an early stage, and it is crucial that these resources are protected during future health crises. Rapid data-sharing between regions should be developed, with wider adoption of the revised 2022 Fragility Fracture Network Minimum Common Data Set for Hip Fracture Audit, and a pragmatic approach to information governance processes in order to facilitate cooperation and meta-audit. This editorial aims to: 1) identify issues related to COVID-19 that require further research; 2) suggest reporting standards for studies of COVID-19 and other communicable diseases; 3) consider the requirement of new risk scores for hip fracture patients; and 4) present the lessons learned from IMPACT in order to inform future collaborative studies.

Cite this article: Bone Joint Res 2022;11(6):342–345.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 279 - 279
1 Sep 2005
Ahmed H Dix-Peek S Martin N Hoffman E
Full Access

We reviewed 821 children with 869 sites of septic arthritis treated from 1983 to 2002. Neonates and patients with septicaemia and penetrating injuries were excluded. There were two age groups: 46% of the children were two years or younger (mean 1.1 years) and 54% were between 3 and 12 years (mean 6.8 years). The male to female ratio was 1.7:1. The diagnosis was made clinically and with the help of special investigations. The white cell count was elevated in 67% and the ESR in 96%. Blood culture was positive in 28%. Radiographs demonstrated widening of joint spaces in 19% and isotope bone scan was positive in 11% of sites, mainly in the hip. No diagnostic joint aspiration was done. In 42 sites (4.6%) the diagnosis was regarded as incorrect because there was no growth or white cells. The most common site of septic arthritis was the knee (37%), followed by the hip (30%), ankle (14%), elbow (10%), shoulder (5%), wrist (3%) and subtalar joint (1%). Treatment was with open arthrotomy and antibiotics (cloxacillin and/or ampicillin). Bacteriologically the most common finding was no growth (50% in each age group). In the younger group the most common finding was Haemophilus influenzae (24.5%). Staphylococcus aureus was found in 37% of the older group. From 2000 the incidence of H. influenzae declined, probably owing to the introduction of vaccine in 1998. Results at 30 sites (3.5%) were poor. There was avascular necrosis in 18 hips, chondrolysis in five hips and three ankles, and stiffness in two knees, an ankle and a subtalar joint. Further analysis showed that poor results were more likely to occur in older patients with S. aureus and where there was a delay in treatment. Where good results were achieved, the mean delay was 3.5 days. It was 9.3 days where results were poor


Bone & Joint Open
Vol. 2, Issue 8 | Pages 661 - 670
19 Aug 2021
Ajayi B Trompeter AJ Umarji S Saha P Arnander M Lui DF

Aims

The new COVID-19 variant was reported by the authorities of the UK to the World Health Organization (WHO) on 14 December 2020. We aim to describe the clinical characteristics and nosocomial infection rates in major trauma and orthopaedic patients comparing the first and second wave of COVID-19 infection.

Methods

A retrospective analysis of a prospectively collected trauma database was reviewed at a level 1 major trauma centre from 1 December 2020 to 18 February 2021 looking at demographics, clinical characteristics, and nosocomial infections and compared to our previously published first wave data (26 January 2020 to 14 April 2020).


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages - 232
1 Nov 2002
Haleem A Rana J Khan A Sarwari A Khan F
Full Access

Background: While generally aware about other infectious diseases, few realize the threats posed by Hepatitis C. We assessed if the Orthopedic surgery residents have adequate knowledge and wheather they take necessary precautions when exposed clinically to Hepatitis C. Methods: A pre coded structured questionnaire was administered to Orthopedic surgery residents from three provinces and seven cities of Pakistan, who were participating in the Annual Orthopedic Review Course at the Aga Khan University hospital. Unprompted questions, focused on key knowledge issues, while beliefs and practices were assessed through knowledge and attitude towards Hepatitis C infectivity, complications, therapeutic modalities, actual precautions taken by them while handling body secretions of the patients. and their reading habbits about the literature of this disease. Results: The median number of surgeries participated in, by the forty-three residents was 150 in the last one year. Though 83% knew that there was no vaccine for HCV, majority (66%) was unaware that it is a sexually transmitted disease and 82% did not know about its possibility of being transmitted perinatally. Eighty-eight percent knew about its transmission through a needle prick injury but 71% of the residents were unaware of the fact that in the case of the needle prick, highest risk of acquisition is of HCV when compared to HBV and HIV. In practices, 74% were vaccinated for HBV. When handling a known case of HCV, 87% used an extra pair of gloves while only 50% took extra care with needles. Median number of needle pricks was one in last one year. Only 16% knew the serostatus of the patients they received injury from. Only 28% of the residents knew their own serostatus for HCV compared to 60% for HBV. 60% of these residents were in habit of handling needles with their hands. Knowledge of HCV did not diff. Conclusion: Changing the attitude of the health care workers towards HCV has become increasingly important. We suggest that all new residents should be given a pretest, a lecture, a demonstration of the standard precautions and infection control procedures with post test, in the beginning of their carriers


Bone & Joint Open
Vol. 2, Issue 10 | Pages 865 - 870
20 Oct 2021
Wignadasan W Mohamed A Kayani B Magan A Plastow R Haddad FS

Aims

The COVID-19 pandemic drastically affected elective orthopaedic services globally as routine orthopaedic activity was largely halted to combat this global threat. Our institution (University College London Hospital, UK) previously showed that during the first peak, a large proportion of patients were hesitant to be listed for their elective lower limb procedure. The aim of this study is to assess if there is a patient perception change towards having elective surgery now that we have passed the peak of the second wave of the pandemic.

Methods

This is a prospective study of 100 patients who were on the waiting list of a single surgeon for an elective hip or knee procedure. Baseline characteristics including age, American Society of Anesthesiologists (ASA) grade, COVID-19 risk, procedure type, and admission type were recorded. The primary outcome was patient consent to continue with their scheduled surgical procedure. Subgroup analysis was also conducted to define if any specific patient factors influenced decision to continue with surgery


Bone & Joint Open
Vol. 1, Issue 6 | Pages 222 - 228
9 Jun 2020
Liow MHL Tay KXK Yeo NEM Tay DKJ Goh SK Koh JSB Howe TS Tan AHC

The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented challenges to healthcare systems worldwide. Orthopaedic departments have adopted business continuity models and guidelines for essential and non-essential surgeries to preserve hospital resources as well as protect patients and staff. These guidelines broadly encompass reduction of ambulatory care with a move towards telemedicine, redeployment of orthopaedic surgeons/residents to the frontline battle against COVID-19, continuation of education and research through web-based means, and cancellation of non-essential elective procedures. However, if containment of COVID-19 community spread is achieved, resumption of elective orthopaedic procedures and transition plans to return to normalcy must be considered for orthopaedic departments. The COVID-19 pandemic also presents a moral dilemma to the orthopaedic surgeon considering elective procedures. What is the best treatment for our patients and how does the fear of COVID-19 influence the risk-benefit discussion during a pandemic? Surgeons must deliberate the fine balance between elective surgery for a patient’s wellbeing versus risks to the operating team and utilization of precious hospital resources. Attrition of healthcare workers or Orthopaedic surgeons from restarting elective procedures prematurely or in an unsafe manner may render us ill-equipped to handle the second wave of infections. This highlights the need to develop effective screening protocols or preoperative COVID-19 testing before elective procedures in high-risk, elderly individuals with comorbidities. Alternatively, high-risk individuals should be postponed until the risk of nosocomial COVID-19 infection is minimal. In addition, given the higher mortality and perioperative morbidity of patients with COVID-19 undergoing surgery, the decision to operate must be carefully deliberated. As we ramp-up elective services and get “back to business” as orthopaedic surgeons, we have to be constantly mindful to proceed in a cautious and calibrated fashion, delivering the best care, while maintaining utmost vigilance to prevent the resurgence of COVID-19 during this critical transition period.

Cite this article: Bone Joint Open 2020;1-6:222–228.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 203 - 210
19 Mar 2021
Yapp LZ Clarke JV Moran M Simpson AHRW Scott CEH

Aims

The COVID-19 pandemic led to a national suspension of “non-urgent” elective hip and knee arthroplasty. The study aims to measure the effect of the COVID-19 pandemic on total hip arthroplasty (THA) and total knee arthroplasty (TKA) volume in Scotland. Secondary objectives are to measure the success of restarting elective services and model the time required to bridge the gap left by the first period of suspension.

Methods

A retrospective observational study using the Scottish Arthroplasty Project dataset. All patients undergoing elective THAs and TKAs during the period 1 January 2008 to 31 December 2020 were included. A negative binomial regression model using historical case-volume and mid-year population estimates was built to project the future case-volume of THA and TKA in Scotland. The median monthly case volume was calculated for the period 2008 to 2019 (baseline) and compared to the actual monthly case volume for 2020. The time taken to eliminate the deficit was calculated based upon the projected monthly workload and with a potential workload between 100% to 120% of baseline.