Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar antimicrobial properties. Cite this article: T. Itabashi, K. Narita, A. Ono, K. Wada, T. Tanaka, G. Kumagai, R. Yamauchi, A. Nakane, Y. Ishibashi. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017;6:108–112. DOI: 10.1302/2046-3758.62.2000619


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 102 - 102
1 Apr 2017
Descamps S Villatte G Massard C Forrestier C Awitor K
Full Access

Background. External fixation is a method of osteosynthesis currently required in traumatology and orthopaedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after a bacterial colonisation of the pin due to its contact with skin and local environment. To prevent such local contamination, one way to handle this issue is to create a specific coating using method which could be applied in the medical field. In this work we develop a surface coating for external fixator pins based on photocatalytic TiOα properties, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. Method. The morphology and structure of the sol-gel coating layers were characterised using, respectively, scanning electron microscopy and X-ray diffraction. Resistance properties of the coating were investigated by mechanical testing. Photo-degradation of acid orange 7 in aqueous solution was used as a probe, to assess the photo-catalytic activity of titanium dioxide layers under UV irradiation. The bactericidal effect induced by the process was evaluated against 2 strains: a Staphylococcus aureus and a multiresistant Staphylococcus epidermidis. Results. The coated pins showed good mechanical strength and efficient antibacterial effect after 1 hour of UV irradiation. Conclusion. Our study allowed to develop an antibacterial coating for stainless steel commonly used in surgical practice. The process using photoactive TiO2 exposed to UV irradiation is actually well known and applied in many disinfection fields, and exhibited efficiency against the two main bactericidal strains involved in pin tract infections. Mechanical tests confirmed the coating's ability to resist to important stresses. Moreover, this kind of coating created by sol-gel dip-coating techniques is not expensive and quite easy to do. As a consequence, we can hope that this new option would treat preventively pin tract infection, even if there is an important optimisation task to be done in order to amplify bactericidal properties. Level of evidence. II


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives. Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Methods. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data. Results. The amount of carbon and the contact angle on both implants were significantly reduced after UV irradiation. The BIC ratios for both UV light-treated implants significantly increased at two weeks, but there was no significant difference at four weeks. There was no significant difference in the BV ratios between the UV light-treated and control implants at two or four weeks. Conclusions. This study suggests that photofunctionalisation of Ti6Al4V implants, similar to that of Ti implants, may promotes osseointegration in early but not in the late phase of osseointegration. Cite this article: R. Yamauchi, T. Itabashi, K. Wada, T. Tanaka, G. Kumagai, Y. Ishibashi. Photofunctionalised Ti6Al4V implants enhance early phase osseointegration. Bone Joint Res 2017;6:331–336. DOI: 10.1302/2046-3758.65.BJR-2016-0221.R1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 32 - 32
1 May 2017
Beninatto R Barbera C Pavan M Galesso D Serena E Elvassore N
Full Access

Background. Hyaluronic acid (HA) hydrogels are becoming an increasingly attractive choice for the creation of new biomaterials useful in wound care, tissue engineering and regenerative medicine, because of their high level of biocompatibility and biodegradability, and for their ability to imitate the environment of the extracellular matrix (ECM). Due to the poor biomechanical properties of native hyaluronan, a variety of chemical modifications have been devised to provide mechanically and chemically stiffer materials. Methods. In this work, 200 kDa hyaluronic acid was modified with coumarin moieties via a functional linker (FID119) and photo-polymerised into networks through a [2+2] cycloaddition reaction using near-UV light (l. max. =365 nm). This method allows to obtain “wall-to-wall” hydrogels starting from moderately viscous solutions. FID119 can therefore be deposited in the cartilage defect as an aqueous solution and can be polymerised in situ after UV irradiation. Results. With a HA molar derivatisation ranging from 10% to 40% and a concentration varying from 10 mg/mL to 40 mg/mL, hydrogels exhibited a wide range of physical properties. When a suspension of human dermal fibroblasts was photo-encapsulated within the hydrogels, cells retained a rounded morphology throughout the period of culture and showed no spreading. Cells remained viable after 48 hours encapsulation, confirming that their viability was affected neither by the polymerisation process nor by UV irradiation. In this study we have also evaluated the proliferation of fibroblasts encapsulated in HA-hydrogels at different degree of reticulation, concentrations and polymerisation time. By means of the resazurin reduction assay (Alamar Blue) it has been shown that encapsulated fibroblasts showed overall lower metabolic activity compared to fibroblasts cultured in traditional 2D tissue culture plastic dishes, in all the tested conditions. Conclusions. This work represents a first step towards the development and characterisation of new HA-based advanced biomaterial to be used as scaffolds in cartilage regeneration. The screening of the different FID119 preparations led to the selection of three prototypes representing the best compromise between physical-chemical properties and biocompatibility. Level of Evidence. III


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 392 - 392
1 Jul 2008
Gardner L Varbiro G Williams G Trividi J Roberts S
Full Access

Cells of the intervertebral disc exist in an unusual environment compared to those of other tissues. Within the disc there are low levels of nutrients available, low oxygen levels and it is an acidic environment due to high lactate levels. Apoptosis (programmed or controlled cell death) has been reported in intervertebral discs, as well as necrosis (uncontrolled cell death). This study has focused on examining the sensitivity of nucleus pulpo-sus (NP) cells to several stimuli, in comparison to two other cells types. Ultra violet (UV) irradiation, serum starvation (with no foetal calf serum) and treatment with 2mM hydrogen peroxide were used to induce apoptosis in cultured bovine NP cells, HeLa (cancer cell line) and 293T cells (human embryo kidney derived) cells. Apoptosis was identified by nuclear morphology following staining with fluorescent Hoechst 33342 dye and propidium iodide; the incidence was measured at 24, 48 and 72 hours. Untreated controls were used for each treatment and at each time point. The incidence of apoptosis increased with time for all treatments. After 72 hours, UV treatment produced the highest levels of apoptosis with levels of apoptosis occurring in the order of HeLa (94%) > NP cells (29%) > 293T cells (15%). Treatment with hydrogen peroxide and serum starvation induced apoptosis at lower levels in all three cell types (maximum of 30%). Serum starvation induced apoptosis in only 10% of NP cells at 72 hours, compared to 20% in HeLa cells. None of the controls contained apoptotic cells. NP cells are stimulated to apoptose in response to UV irradiation, hydrogen peroxide and serum starvation. However, levels of apoptosis are much lower after UV treatment in comparison to HeLa cells (3 times lower), suggesting that they may have a protective mechanism to this apoptotic stimulus, compared to HeLa cells. The low levels of apoptosis observed in NP cells with serum starvation may be due to the low nutrient environment that they exist in normally