Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 49 - 49
1 May 2016
Stahnke J Sharpe K
Full Access

We present here a case of pseudotumor formation likely due to metal wear debris generated at the head-neck taper (trunnion) of the femoral stem and head components in a metal-on-highly cross-linked polyethylene (MOP) total hip arthroplasty. Over the last few years, this recently described diagnosis, trunnionosis, is being recognized and reported more frequently. This patient presented with a rather large (12 cm diameter) pseudotumor with accompanying loss of abductors and a pelvic discontinuity making reconstruction more challenging. We believe the psuedotumor in this patient developed from trunnionosis. This is an interesting case of aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) in a MOP total hip arthroplasty.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 30 - 30
1 May 2018
Spiegelberg B Lanting B Howard J Teeter M Naudie D
Full Access

Background

There has been a trend in the evolution of total hip arthroplasty towards increased modularity, with this increase in modularity come some potentially harmful consequences. Modularity at the neck shaft junction has been linked to corrosion, adverse reaction to metal debris and pseudotumor formation.

The aim of this retrieval study is to assess whether the surface integrity of the polyethylene (PE) liner is affected by metal wear debris in a single implant design series of THA revised for trunnionosis.

Method

A retrieval analysis of thirty dual-taper modular neck hip prostheses was performed, the mean time from implantation to revision was 2.7 years (1.02–6.2). The PE liners were analysed using a scanning electron microscope with an energy dispersive spectrometer to assess for metal particles embedded on the liner surface. Serum metal ion levels and inflammatory markers were also analysed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 39 - 39
1 May 2017
Gee C Poole W Wilson D Gibbs J Stott P
Full Access

Adverse reaction to metal debris (ARMD) is well recognised as a complication of large head metal on metal total hip replacement (THR) leading to pain, bone and tissue loss and the need for revision surgery. An emerging problem of trunnionosis in metal on polyethylene total hip replacements leading to ARMD has been reported in a few cases. Increased metal ion levels have been reported in THR's with a titanium stem and a cobalt chrome head such as the Accolade-Trident THR (Stryker).

We present 3 cases of ARMD with Accloade-Trident THR's with 36mm cobalt chrome head and a polyethylene liner. Metal ion levels were elevated in all three patients (cobalt 10.3 – 161nmol/l). Intraoperative tissue samples were negative for infection and inflammatory markers were normal. Abnormal fluid collections were seen in all three cases and bone loss was severe in one patient leading to a proximal femoral replacement. Histology demonstrated either a non-specific inflammatory reaction in a case which presented early or a granulomatous reaction in a more advanced case suggesting a local foreign body reaction. All patients had improved symptoms post-operatively. 1 patient who had staged bilateral Accolade-Trident THR's required revision of both THR's.

ARMD in metal on polyethylene THR's with a titanium stem represents a potential emerging problem. Further studies are required to assess whether these occurrences are rare or represent the tip of an iceberg.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 57 - 57
1 Dec 2022
Gazendam A Ekhtiari S Wood T Petruccelli D Tushinski D Winemaker MJ de Beer J
Full Access

The Accolade®TMZF is a taper-wedge cementless metaphyseal coated femoral stem widely utilized from 2002-2012. In recent years, there have been reports of early catastrophic failure of this implant. Establishing a deeper understanding of the rate and causes of revision in patients who developed aseptic failure in stems with documented concerns about high failure rates is critical. Understanding any potential patient or implant factors which are risk factors for failure is important to inform both clinicians and patients. We propose a study to establish the long-term survival of this stem and analyze patients who underwent aseptic revision to understand the causes and risk factors for failure. A retrospective review was undertaken of all patients who received a primary total hip arthroplasty with an Accolade® TMZF stem at a high-volume arthroplasty center. The causes and timing of revision surgery were documented and cross referenced with the Canadian Institute of Health Information Discharge Abstract Database to minimize loss to follow-up. Survivorship analysis was performed with use of the Kaplan-Meier curves to determine the overall and aseptic survival rates at final follow-up. Patient and implant factors commonly associated with aseptic failure were extracted and Cox proportional hazards model was used. A consecutive series of 2609 unilateral primary THA patients implanted with an Accolade®TMZF femoral hip stem were included. Mean time from primary surgery was 12.4 years (range 22 days to 19.5 years). Cumulative survival was 96.1% ± 0.2 at final follow-up. One hundred and seven patients underwent revision surgery with aseptic loosening of the femoral component was the most common cause of aseptic failure in this cohort (33/2609, 1.3%). Younger age and larger femoral head offset were independent risk factors for aseptic failure. To our knowledge, this is the largest series representing the longest follow-up of this taper-wedge cementless femoral implant. Despite early concerns, the Accolade® TMZF stem has excellent survivorship in this cohort. Trunnionosis as a recognized cause for revision surgery was rare. Younger age and larger femoral head offset were independent risk factors for aseptic failure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 69 - 69
1 Nov 2016
Rosenberg A
Full Access

Metal Ion Levels Not Useful in Failed M-O-M Hips: Systematic Review; Revision of Failed M-O-M THA at a Tertiary Center; Trunnionosis in Metal-on-Poly THA?; Do Ceramic Heads Eliminate Trunnionosis?; Iliopsoas Impingement After 10 THA; Pain in Young, Active Patients Following THA; Pre-operative Injections Increase Peri-prosthetic THA Infection; Debridement and Implant Retention in THA Infection; THA after Prior Lumbar Spinal Fusion; Lumbar Back Surgery Prior to THA Associated with Worse Outcomes; Raising the Joint Line Causes Mid-Flexion Instability in TKA; No Improvement in Outcomes with Kinematic Alignment in TKA; Botox For TKA Flexion Contracture; Intra-operative Synovitis Predicts Worse Outcomes After TKA for OA; When is it Safe for Patients to Drive After Right TKA?; Alpha-Defensin for Peri-prosthetic Joint Infection; Medial Tibia Overhang and Pain Score After TKA


Bone & Joint 360
Vol. 4, Issue 5 | Pages 10 - 12
1 Oct 2015

The October 2015 Hip & Pelvis Roundup. 360 . looks at: Smoking and complications in arthroplasty; Smoking cessation beneficial in arthroplasty; Intermediate care and arthroplasty; Do we still need cell salvage?; Femoroacetabular impingement in the Japanese population; Trunnionosis or taperosis and geometry; Decontamination for staphylococcus aureus works!; Policeman or opportunity? Quality improvement with registries; Death rates higher in readmission to other hospitals


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 9 - 9
1 Jun 2017
Hothi H Duncan C Garbuz D Henckel J Skinner J Hart A
Full Access

Trunnionosis, due to mechanical wear and/or corrosion at the head stem taper junction, can occur in metal on polyethylene (MOP) hip implants. In some patients this results in severe soft tissue destruction or Adverse Reaction to Metal Debris (ARMD). The amount of material required to cause ARMD is unknown but analyses of retrieved hips may provide the answer to this clinically important question. We collected implants from 20 patients with failed hips with MOP bearings, revised due to ARMD. We collected clinical, imaging and blood test data. We graded the severity of taper corrosion (1 to 4), and quantified the volume of material loss from this junction. We compared our results with previous data collected for metal-on-metal (MOM) hips. The median time to revision of the MOP hips was 51.3 (23.1–56.4) months. All head tapers were moderately to severely corroded with a median corrosion score of 4. The median (range) of total material loss at the taper of the MOP hips was 3.9 mm. 3. (2.96 – 7.85 mm. 3. ) and the material loss rate was 1.4 mm. 3. / year (0.56 – 1.82). Comparison with MOM hips revealed no significant difference in taper material loss (p=0.7344) with a median rate of 0.81 mm. 3. / year (0.01–3.45). We are the first to quantify the volume of material loss at the head taper of hip implants with MOP bearings that were revised due to trunnionosis. This data indicates that a clinically significant dose of cobalt and chromium to induce ARMD is approximately 1.4 mm. 3. / year. We have identified a clinically significant volume of taper material loss in MOP hips


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 39 - 39
1 Aug 2018
Bostrom M
Full Access

Trunnionosis is an important failure mechanism of total hip arthroplasties as has recently been reported by the England and Wales national joint registry. Adverse local tissue reaction has also recently been associated with total hip arthroplasty (THA) with metal on polyethylene and ceramic on polyethylene articulations. The contributing factors in the mechanism of this failure pattern have not been elucidated, however they are likely multifactorial to include corrosion, fretting, taper design, implantation time, metal particulate debris, and wear at the metal on metal interface. Furthermore, dissimilar metallic combinations have been shown to exacerbate tribocorrosion. Authors have also reported on the use of ceramic heads to reduce trunniononis, however, tribocorrosion is still present. The majority of the literature regarding modular head neck taper fretting and corrosion involves cobalt chrome (CoCr) alloy. Little is known about head neck fretting corrosion with Oxinium femoral heads. To measure fretting, corrosion, and wear on the female tapers of retrieved Oxinium femoral heads and to determine how demographic and device factors affect these measurements. Ninety-two (92) retrieved 12/14 Oxinium heads were graded using the modified Goldberg score for subjectively grading corrosion and fretting on the taper surface. A novel silicone molding technique was validated, then applied to the female tapers of the retrievals and of two pristine Oxinium femoral heads, sizes 32+0 and 32+4. The molds were scanned using a Konica Minolta 3D laser scanner for reconstruction of the topography, dimensions, and surface features of the tapers. Geomagic software was used to align the retrieved to the pristine 3D models, allowing measurement of surface deviations (from wear) that had occurred while the heads were implanted. Patient demographic and implant data were correlated with Goldberg scores and wear deviations. The mean Goldberg score was 1.6. Goldberg scores of 1 (minimal), 2 (mild), and 3 (moderate) were present in 41 of the 92 heads (45%), 43 heads (47%), and 8 heads (8%) respectively. No implants received a score of 4 (severe). A positive significant correlation was found between length of implantation and increased female taper fretting (R = 0.436, p < 0.01). Wear deviations were significantly greater with 36mm heads compared to 32mm heads (p < 0.01) and with +4 offsets compared to 0 offsets (p = 0.013). Similar to previous work analyzing ceramic heads, Oxinium heads demonstrated predominately mild tribocorrosion grades, however do not eliminate tribocorrosion. Tribocorrosion was increased with large heads and increased offsets. This finding is consistent perhaps with greater mechanical burden that larger implants with increased offsets experience. Further investigation is needed to elucidate if Oxinium femoral heads reduce fretting and corrosion when compared to CoCr femoral heads


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 57 - 57
1 Nov 2016
Lanting B Tan S Lau A Teeter M Del Balso C McCalden R MacDonald S Vasarhelyi E McAuley J Naudie D Howard J
Full Access

Trunnionosis in modular hip arthroplasty has recently been recognised to be clinically important. Gaining an understanding of how the material interface at the head-trunnion affects the tribology at the modular junctions has current clinical implications as well as an implication on future implant selection and material choice. This matched-cohort study aims to compare tribocorrosion between ceramic and cobalt-chromium trunnions and to investigate other factors that contribute to the difference in tribocorrosion if present. All hip prostheses retrieved between 1999 and 2015 at one centre were reviewed. Fifty two ceramic heads were retrieved, and these were matched to a cobalt-chromium cohort according to taper design, head size, neck length and implantation time in that order. The two cohorts were similar in male:female ratio (p=0.32) and body mass index (p=0.15) though the ceramic group was younger than the cobalt-chromium group (56.6 (+/−)13.5 years for ceramic group vs 66.3 (+/−14.4) years for cobalt-chromium group; p=0.001). There was no significant difference in the reasons for revision between the two groups (p=0.42). The femoral head trunnions were examined by two independent observers using a previously published 4-point scoring technique. The trunnions were divided into three zones: apex, middle and base. The observers were blinded to clinical and manufacturing data where possible. Ceramic head trunnions demonstrated a lower median fretting and corrosion score at the base zone (p<0.001), middle zone (p<0.001) and in the combined score (p<0.001). In a subgroup analysis by head size, ceramic heads had a lower fretting and corrosion score at 28mm head diameter (p<0.001). Within the ceramic group, taper design had a significant effect on fretting and corrosion in the apex zone (p=0.04). Taper design also had a similar effect in the cobalt-chromium group in the apex zone (p=0.03). For the ceramic trunnions, the largest effect was contributed by the difference between the 11/13 taper and the 12/14 taper. For the cobalt-chromium trunnions, the largest effect was contributed by the difference between the 5 degree 38′ 37″ taper and type 1 taper. Ceramic head trunnions showed a significantly lower fretting and corrosion score as compared to cobalt-chromium trunnions. Ceramic heads had a lower score than cobalt-chromium heads at 28mm head diameter. Taper design had an effect on fretting and corrosion within each cohort