Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Methods. Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The
Introduction. The optimum UHMWPE orthopaedic implant bearing surface must balance wear, oxidation and fatigue resistance. Antioxidant polyethylene addresses free radicals, resulting from irradiation used in cross-linking, that could oxidize and potentially lead to fatigue damage under cycles of in vivo use. Assessing the effectiveness of antioxidant (AO) polyethylene compared to conventional gamma-sterilized or remelted highly cross-linked (HXL) polyethylene is necessary to set realistic expectations of the service lifetime of AO polyethylene in the knee. This study evaluates what short-term antioxidant UHMWPE retrievals can reveal about: (1) oxidation-resistance, and (2) fatigue-resistance of these new materials. Methods. An IRB-approved retrieval laboratory received 25 AO polyethylene tibial insert retrievals from three manufacturers with in vivo time of 0–3 years. These were compared with 20 conventional gamma-inert sterilized and 30 HXL (65-kGray, remelted) tibial inserts of the same in vivo duration range. The retrievals were. (1) analyzed for oxidation and
Introduction. In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:. manufacturing-variables on as-manufactured UHMWPE;. in vivo time on these initial properties;. identifying important factors in selecting UHMWPE for the hip or knee. Methods. After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals. All retrievals were analyzed for oxidation and
Introduction. While advances in joint-replacement technology have made total ankle arthroplasty a viable treatment for end-stage arthritis, revision rates for ankle replacements are higher than in hip or knee replacements [1]. The questions asked in this study were (1) what retrieved ankle devices demonstrate about ankle arthroplasty failures, and (2) how do these failures compare to those seen in the hip and the knee?. Materials and Methods. An IRB-approved retrieval laboratory received retrieved polyethylene inserts and surgeon-supplied reason for revision from 70 total-ankles (7 designs, including five currently-marketed designs) from 2002 to the present. All retrievals were rated for clinical damage. Polyethylene inserts received six months or less after retrieval (n=45) were analyzed for oxidation using Fourier Transform Infrared (FTIR) spectroscopy, reported as maximum ketone oxidation index [2]. Insert sterilization method was verified using