Background. Metal-on-metal (MoM) hip arthroplasty has been associated with adverse reactions including pseudotumours, and osteolysis. Tissues surrounding failed MoM hip implants are often infiltrated by inflammatory cells such as monocytes and neutrophils. The mechanisms by which these cells are recruited to the tissues remain unclear. Cobalt from MoM implants activates
Aims. Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. Methods. After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected.
Aims. This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Methods. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes. Results. WGCNA revealed critical gene modules for OB and OP, identifying the
Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two
This meta analysis address the relationship between infection developing after total hip arthroplasty (THA) and heterotopic ossification (HO). To identify the gaps in available knowledge, we screened for full-length peer-reviewed research articles listed in PubMed, Embase, and Web of Science over the past 20 years. The following search terms and Boolean operators were used: heterotopic ossification AND infection AND (hip replacement OR hip arthroplasty). The search resulted in the identification of as few as 14 articles describing periprosthetic joint infection (PJI) and HO after THA. Data summarized from 6 studies suitable for further meta-analysis yielded a cumulative sample size of 753 observations, with 186 recorded events of HO. The pooled RR was estimated at 2.22 (95% CI: 1.00 to 4.91, p = 0.0497), suggesting a more than twofold risk of HO compared to the group without PJI. In conclusion, there is a clear association between a higher risk of HO and PJI. Basic research findings support the hypothesis that bacterial pathogen-associated molecular patterns (PAMPs) can lead to osteogenesis through a
Introduction. Multiple studies have identified Cutibacterium acnes (C.acnes) and other microbes in intervertebral disc tissue using 16S DNA Sequencing and microbial cultures. However, it remains unclear whether these bacteria are native to the discs or result from perioperative contamination. Our study aimed to detect Gram-positive bacteria in non-herniated human disc samples and explore correlations with
The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival.
Summary. Metal-on-metal hip replacements have been associated with adverse reactions including inflammatory pseudotumours and soft tissue necrosis. We have shown that cobalt can directly activate
Introduction and Objective. Total joint replacement is indicated for osteoarthritis where conservative treatment has failed, and in the UK the number of patients requiring hip and knee replacements is set to increase with an ageing population. Survival of total hip replacements is around 85% at 20 years with the most common reason for revision being aseptic loosening of the implant secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can also cause pseudotumour formation. As revision surgery is associated with higher morbidity, mortality, infection rates, venous thromboembolism, resource demand and poorer subsequent function it is important to understand the mechanisms underlying the pro-inflammatory process to improve implant survival.
Introduction and Objective. Intervertebral disc (IVD) degeneration is one of the major contributors to low back pain, the leading cause of disability worldwide. This multifactorial pathological process involves the degradation of the extracellular matrix, inflammation, and cell loss due to apoptosis and senescence. While the deterioration of the extracellular matrix and cell loss lead to structural collapse of the IVD, increased levels of inflammation result in innervation and the development of pain. Amongst the known regulators of inflammation,
All types of regenerative materials, including metal implants, porous scaffolds and cell-laden hydrogels, interact with the living tissue and cells. Such interaction is key to the settlement and regenerative outcomes of the biomaterials. Notably, the immune reactions from the host body crucially mediate the tissue-biomaterials interactions. Macrophages (as well as monocytes and neutrophils), traditionally best known as defenders, accumulate at the tissue-biomaterials interface and secrete abundant cytokines to create a microenvironment that benefits or inhibits regeneration. Because the phenotype of these cells is highly plastic in response to varying stimuli, it may be feasible to manipulate their activity at the interface and harness their power to mediate bone regeneration. Towards this goal, our team have been working on macrophage-driven bone regeneration in two aspects. First, targeting the abundant, glucan/mannan-recognising receptors on macrophages, we have devised a series of glucomannan polymers that can stimulate macrophages to secrete pro-osteogenic cytokines, and applied them as coating polymer of mesenchymal stem cells-laden hydrogels. Second, targeting the
Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune
Adolescent idiopathic scoliosis (AIS) is a poorly understood progressive curvature of the spine. The 3-dimmensionnal spinal deformation brings abnormal biomechanical stresses on the load-bearing organs. We have recently reported for the first time the presence of facet joint cartilage degeneration comparable to age-related osteoarthritis in scoliotic adolescents. To better understand the degenerative mechanisms and explore new therapeutic possibilities, we focused on
Background. Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). ARMD describes numerous symptoms in patients such as pain, osteolysis and soft tissue damage. Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune
Complement C5a receptor 1 (C5aR1) has crucial functions in host defense against danger molecules, as does
Aim. The diagnosis of periprosthetic joint infection (PJI) in total joint arthroplasty (TJA) remains a serious clinical challenge. Nowadays, limited biomarkers associated with PJI are available. We investigated therefore the utility of gene expression pattern of
Alarmins- also referred to as damage associated molecular patterns (DAMPS)- are endogenous molecules mobilized in response to tissue damage known to activate the innate immune system and regulate tissue repair and remodelling. The molecular mechanisms that regulate inflammatory and remodelling pathways in tendinopathy are largely unknown therefore identifying early immune effectors is essential to understanding the pathology. S100A8 and S100A9 are low molecular weight calcium binding proteins primarily released by activated phagocytes in an inflammatory setting and also secreted as a heterodimeric complex that exhibits cytokine like functions. Based on our previous investigations we sought evidence of S100A8/A9 expression in human tendinopathy and thereafter, to explore mechanisms whereby S100 proteins may regulate inflammatory mediators and matrix regulation in human tenocytes. Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing ‘early pathology’) biopsies were collected from patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from patients undergoing arthroscopic stabilisation surgery. S100A8/A9 expression was analysed at transcript and protein level using quantitative RT-PCR and immunohistochemistry, respectively. Primary human tenocytes were cultured from hamstring tendon tissue obtained during hamstring tendon ACL reconstruction. The in vitro effect of recombinant human S100 A8/A9 on primary human tenocytes was measured using quantitative RT-PCR and ELISA. Immunohistochemistry of tendinopathic tissues demonstrated the presence of S100 A8/A9 in diseased tissues compared to control tissue. In addition, early pathological diseased tissue indicated greater S100A9 expression compared with established diseased pathology. These findings were reflected by data obtained at transcript level from diseased tissues. Recombinant human S100A8, A9 and A8/A9 complex led to significant increase in expression of inflammatory mediators, including IL-6 in vitro. Further analysis via quantitative RT-PCR demonstrated recombinant S100A8, A9 and A8/A9 complex treatment on tenocytes, in vitro, had no direct effect on the expression of genes involved in matrix remodelling. The presence of S100A8 and S100A9 in early tendinopathic lesions suggests expression is upregulated in response to cellular damage. S100A8 and S100A9 are endogenous ligands of
Introduction. Macrophages phagocytes implant wear debris and produce various cytokines to evoke inflammation and periprosthetic osteolysis of aseptic loosening. It had been reported that expression of
Implant-associated osteomyelitis is caused by persistent bacterial infections, predominantly by staphylococci species forming biofilms on implants or osteosynthesis – materials. In the majority of patients the systemic immune response appears to be inconspicous with only minor upregulation of activation-associated receptors on the polymorphonuclear neutrophils (PMN). We found, however, evidence the activation of T cells, apparent as the expansion of CD4+ and CD8+ T cells bearing the activation-associated receptor CD11b. These cells also lacked the co-stimulatory molecule CD28, which is a further indicator for T cell activation. Moreover, small populations of T cells expressing