The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods
Background. Accurate acetabular cup positioning is considered to be essential to prevent postoperative dislocation and improve the long-term outcome of total hip arthroplasty (THA). Recently various devices such as navigation systems and patient-specific guides have been used to ensure the accuracy of acetabular cup positioning. Objectives. The present study evaluated the usefulness of CT-based three-dimensional THA preoperative planning for acetabular cup positioning. Methods. This study included 120 hips aged mean 68.3 years, who underwent primary THA using CT-based THA preoperative planning software ZedHip® (LEXI, Tokyo Japan) and postoperative CT imaging (Fig.1). The surgical approach adopted the modified Watson-Jones approach in the lateral decubitus position and Trident HA acetabular cups were used for all cases. Preoperatively the optimum cup size and position in the acetabular were decided using the ZedHip® software, taking into consideration femoral anteversion and to achieve the maximum range of motion in dynamic motion simulation. Radiographic inclination (RI) was selected in the range between 40°∼45° and radiographic anteversion (RA) in the range between 5°∼25°.
The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures.
A comprehensive study of osteology remains a cornerstone of current orthopaedic and traumatological education. Osteology was already established as an important part of surgical education by the 16. th. century. In order to teach anatomy and osteology, the corpses of executed criminals were dissected by the praelector anatomiae of the Amsterdam Guild of Surgeons. Magnificent anatomical atlases preserve the knowledge obtained from these dissections. We present an overview of the most authoritative works of Vesalius, Bidloo, Cheselden, and Albinus authored in the 16. th. , 17. th. and 18. th. centuries. At that time a knowledge of osteology was necessary to pass the ‘master-exam’ in order to become a surgeon, and anatomical teaching was traditionally based on the practice of dissection. In the modern era, anatomical dissection and illustrations are largely being replaced by
Introduction. Revision total hip arthroplasty is often associated with acetabular bone defects. In most cases, assessment of such defects is still qualitative and biased by subjective interpretations.
Total hip replacement is among the most successful interventions in medicine and has been termed “The Operation of the Century”. Most major problems have been solved including femoral fixation, acetabular fixation, and wear. With a success rate of over 95% at 10 years in both hip and knee arthroplasty in a number of studies, the question remains as to whether the current status quo is optimal or acceptable. The literature, however, reports are from centers that represent optimised results and registry data, including the Medicare database, indicates that substantial short-term problems persist. The major issue is the variability in the performance of the procedure. The inability to consistently position components, particularly the acetabular component, results in major problems including instability and limb length discrepancy. A report by Malchau, et al. reveals that even among the best surgeons, optimal acetabular component positioning is only achieved 50% of the time. The penalty for missing the target is increased incidence of instability, increased wear rate, and diminished function due to restricted motion. Complications are related to position and a major potential explanation is the impact of patient position. Traditional imaging presents a two-dimensional rather than three-dimensional view of the patient and the patient is in a supine, non-functional position at the time that imaging is performed. Adverse events attributed to malposition, however, occur in functional positions and there is evidence that the orientation of the pelvis changes from the supine position at which imaging is performed. This topic has been studied extensively on three continents and the consensus is that the pelvis shifts on the order of 30–40 degrees from the supine to standing and sitting and furthermore, the acetabular component position changes proportionally with the rotation of the pelvis that occurs. How do we incorporate this information into imaging arthroplasty patients? This would require imaging the entire body, acquiring AP and lateral images simultaneously so that 3D imaging can be performed, performing imaging in a functional position (standing or sitting) and optimally at a lower radiation dose since these patients have repeated images and therefore a cumulative radiation dose over their lifetime. This technology was FDA approved for use in the hip and knee in 2011 and pilot studies have been performed at Washington University School of Medicine in St. Louis to validate the number of the hip and knee arthroplasty applications. In conclusion, weightbearing and rotation have substantial impact on the standard measurements obtained before and after hip and knee arthroplasty. These differences in measurements between supine, sitting, and standing as well as correction for rotation may explain the lack of a stronger correlation between component position and a variety of complications that are observed such as variability in wear rates as well as instability. In knee arthroplasty, the change in mechanical axis that occurs from restoring all of patients to a neutral mechanical axis may explain some of the persistent pain and dissatisfaction that has been recently been reported at a relatively high percentage of knee arthroplasty patients. Because of the numerous potential clinical implications of
To introduce a new robot-assisted surgical system for spinal posterior fixation which called TiRobot, based on intraoperative
Navigation is the combination of real and virtual anatomy. Registration brings the virtual world of imaged anatomy into accordance with the real world of actual anatomy. Without a navigation system the process takes place in the head of the surgeon, he assigns the image data to the patient’s anatomy, based on his experience. This process is called mental registration. Registration methods: Every point in the patient’s anatomy correlates to one point in the
Most acetabular defects can be treated with a cementless acetabular cup and screw fixation. However, larger defects with segmental bone loss and discontinuity often require reconstruction with augments, a cup-cage, or triflange component – which is a custom-made implant that has iliac, ischial, and pubic flanges to fit the outer table of the pelvis. The iliac flange fits on the ilium extending above the acetabulum. The ischial and pubic flanges are smaller than the iliac flange and usually permit screw fixation into the ischium and pubis. The custom triflange is designed based on a pre-operative CT scan of the pelvis with metal artifact reduction, which is used to generate a
A recent proposed modification in surgical technique in total knee arthroplasty (TKA) has been the introduction of patient specific instrumentation or custom cutting guides (CCGs). With CCGs, preoperative
Restoring native hip biomechanics is crucial to the success of THA. This is reflected both in terms of complications after surgery such as instability, leg length inequality, pain and limp; and in terms of patient satisfaction. The challenge that remains is that of achieving optimal implant sizing and positioning so as to restore, as closely as possible, the native hip biomechanics specific to the hip joint being replaced. This would optimise function and reduce complications, particularly, instability. (Mirza et al., 2010). Ideally, this skill should also be reproducible irrespective of the surgeon's experience, volume of surgery and learning curve. The general consensus is that the most substantial limiting factor in a THA is the surgeon's performance and as a result, human errors and unintended complications are not completely avoidable (Tarwala and Dorr, 2011). The more challenging aspects include acetabular component version, sizing and femoral component sizing, offset and position in the femoral canal. This variability has led to interest in technologies for planning THA, and technologies that help in the execution of the procedure. Advances in surgical technology have led to the development of computer navigation and robotic systems, which assist in pre-operative planning and optimise intra-operative implant positioning. The evolution of surgical technology in lower limb arthroplasty has led to the development of computer navigation and robotics, which are designed to minimise human error and improve implant positioning compared to pre-operative templating using plain radiographs. It is now possible to use pre-operative computerised tomography (image-based navigation) and/or anatomical landmarks (non-imaged-based navigation) to create
Introduction. Geometric variations of the hip joint can give rise to repeated abnormal contact between the femur and acetabular rim, resulting in cartilage and labrum damage. Population-based geometric parameterisation can facilitate the flexible and automated in silico generation of a range of clinically relevant hip geometries, allowing the position and size of cams to be defined precisely in three dimensions. This is advantageous compared to alpha angles, which are unreliable for stratifying populations by cam type. Alpha angles provide an indication of cam size in a single two-dimensional view, and high alpha angles have been observed in asymptomatic individuals. Parametric geometries can be developed into finite element models to assess the potential effects of morphological variations in bone on soft tissue strains. The aim of this study was to demonstrate the capabilities of our parameterisation research tool by assessing impingement severity resulting from a range of parametrically varied femoral and acetabular geometries. Methods. Custom made MATLAB (MathWorks) and Python codes. [1]. were used to generate bone surfaces, which were developed into finite element models in Abaqus (SIMULIA). Parametric femoral surfaces were defined by a spherical proximal head and ellipse sections through the neck/cam region. This method produced surfaces that were well fitted to bone geometry segmented from CT scans of cam patients and capable of producing trends in results similar to those found using segmented models. A simplified spherical geometry, including the labrum and acetabular cartilage, represented the acetabulum. Femoral parameters were adjusted to define relevant variations in cam size and position. Two radii (small and large cams) and two positions (anterior and superior cams) were defined resulting in four models. Alpha angles of these parametric femurs were measured in an anterior-posterior view and a cross-table lateral view using ImageJ (NIH). A further model was developed using a femur with a medium cam size and position, and the level of acetabular coverage and labrum length were varied. Bones were modelled as rigid bodies and soft tissues were modelled as transversely isotropic linearly elastic materials. With the acetabulum fully constrained in all cases, the femurs were constrained in translation and rotated to simulate flexion followed by internal rotation to cause impingement against the labrum. Results and Discussion. Models generated using the parametric approach showed that potential for tissue damage, indicated through local strain, was not predicted by measured alpha angle, but resulted from cam extent and position as defined by the ellipses. When variations were made to the acetabular rim, an increase in bone coverage had the greatest effect on impingement severity, indicated by strain in the cartilage labral-junction. An increase in labral length increased labral displacement, but had less effect on cartilage-labral strain. Patient specific models currently require full image segmentation, but there is potential to further develop these parametric methods to assess likely impingement severity based on a series of measures of the neck and acetabulum when
Accurate detection of migration of hip arthroplasty stems without the burden of bone markers and stereo-radiographic equipment is of interest. This would facilitate the study of stem migration in an experimental setting, but more importantly, it would allow assessing stem loosening in patients with a painful hip outside a study protocol. We developed and validated a marker-free automated CT-based spatial analysis method (CTSA) to quantify stem-bone migration in successive CT scan acquisitions. First, we segmented the bone and stem within both
Background. Resection of sacral chordoma remains challenging because complex anatomy and important nerves in the sacrum make it difficult to achieve wide surgical margins. Computer-assisted navigation has shown promise in aiding in optimal preoperative planning and in providing accurate and precise tumour resection during surgery. Purpose. To evaluate the benefit of using computer-assisted navigation in precise resection of sacral chordoma. Methods. From 2007 to 2012, we performed sacral chordoma resections with computer-assisted navigation in 19 consecutive patients, of which 15 were primary and 4 were recurrent. There were 11 male and 8 female patients with a mean age of 53.5 years (range, 36–81 years). Eighteen lesions had their upper extent above S3 and the remaining one was below S3. Reconstructed
Recently, several preliminary reports have been issued on the application of computer assistance to bone tumour surgery. Surgical navigation systems can apply
To explain the knee kinematics, the vector of the quadriceps muscle, the primary extensor, is important and the relationship of the quadriceps vector (QV) to other kinematic and anatomic axes will help in understanding the knee. Knee kinematics is important for understanding knee diseases and is critical for positioning total knee arthroplasty components. The relationship of the quadriceps to knee has not been fully elucidated.
Background: Complex fractures of the tibial plateau can be difficult to characterize on plain radiographs and two-dimensional computed tomography scans. We tested the hypothesis that three-dimensional computed tomography reconstructions improve the reliability of tibial plateau fracture characterization and classification. Methods: Forty-five consecutive intra-articular fractures of the tibial plateau were evaluated by six independent observers for the presence of six fracture characteristics that are not specifically included in currently used classification schemes:. posteromedial shear fracture;. coronal plane fracture;. lateral condylar impaction;. medial condylar impaction;. tibial spine involvement;. separation of tibial tubercle necessitating anteroposterior lag screw fixation. In addition, fractures were classified according to the AO/OTA Comprehensive Classification of Fractures, the Schatzker classification system and the Hohl and Moore system. Two rounds of evaluation were performed and then compared. First, a combination of plain radiographs and two-dimensional computed tomography scans (2D) were evaluated, and then, four weeks later, a combination of radiographs, two-dimensional computed tomography scans, and three-dimensional reconstructions of computed tomography scans (3D) were assessed. Results: Interobserver agreement improved for all classification systems after the addition of three-dimensional reconstructions (AO/OTA κ2D = 0.536 versus κ3D = 0.545; Schatzker κ2D = 0.545 versus κ3D = 0.596; Hohl and Moore κ2D = 0.668 versus κ3D = 0.746). Three-dimensional computed tomography reconstructions also improved the average intraobserver reliability for all fracture characteristics, from κ2D = 0.624 (substantial agreement) to κ3D = 0.687 (substantial agreement). The addition of
The detailed anatomy of interconnectivity of intervertebral disc annular fibre layers remains unclear and a structural survey of interlammellar connectivity is required to understand this anatomy and mechanical behavior. The subsequent failure modes of the annulus under hydrostatic loading require definition to understand genesis of annular tears and disc herniation. Interlamellar Connectivity. We imaged anterior annular sections from ovine lumbar discs. Using differential interference contrast microscopy we were able to reconstruct a
INTRODUCTION. Rotational malalignment of the components in total knee arthroplasty has been linked to patellar maltracking, improper soft tissue balance, abnormal kinematics, premature wear of the polyethylene inlay, and subsequent clinical complications such as anterior knee pain (Barrack et al., 2001; Zihlmann et al., 2005; Lakstein at al., 2010). This study investigates an innovative image-based device that is designed to be used along with an intraoperative Isocentric (ISO-C) 3D imaging C-arm, and the conventional surgical instruments for positioning the femoral component at accurate rotational alignment angles. METHODS. The new device was tested on 5 replica models of the femur (Sawbones). Zimmer NexGen total knee replacement instruments were used to prepare the bones. After making the distal transverse cut on the femurs, the trans-epicondylar-axis (TEA) were defined by a line connecting the medial and lateral epicondyles which were marked by holes on the bone models. The 4-in-1 cutting jig was placed and pinned to the bones with respect to the TEA considering 5 different planned rotational alignments: −10°, −5°, 0°, +5°, and +10° (minus sign indicating external and plus sign internal rotation). At this point, the jig was replaced by the alignment device using the head-less pins as the reference, and subsequently an Iso-c 3D image of the bone was acquired using Siemens ARCADIS Orbic C-arm. The image was automatically analyzed using custom software that determined the angle between the TEA and the reference pins (Fig 1). The difference between the angle read from the device and the planned angle was then used to correct the locations of the reference pins through a custom protractor device. Preparation of the bone was continued by placing the 4-in-1 jigs on the newly placed pins.
Dupuytrens disease is a fibrosing condition of the palmar aponeurosis and its extensions within the digits. Normal fascial fibres running longitudinally in the subcutaneous tissues of the palm become thickened and form the characteristic nodules and cords pathognomonic of Dupuytrens disease. A wide variety of surgical interventions exist, of these the partial fasciectomy remains the most conventional and widely used technique. Minimally invasive surgical treatments such as needle fasciotomy are, however, becoming increasingly popular. Dupuytrens disease remains a challenging condition to treat as recurrence is universally found with all surgical interventions. Although recurrence may be related to the severity of the disease, there are currently no research tools other than clinical examination to examine changes in the diseased tissue postoperatively and predict likelihood of long-term success. Magnetic Resonance Imaging (MRI) may be of value for the study of Dupuytren disease, at present its use has been greatly underexplored. We wished to carry out a pilot study in order to examine the possibility of using 3.0 Tesla MRI to study Dupuytren tissue and then furthermore to examine the potential changes post-operatively following percutaneous fasciotomy. Five patients set to undergo percutaneous needle fasciotomy were recruited and consented for the study. All patients underwent MRI scanning of the affected hand pre-operatively and at two weeks post-operatively. Scanning was carried out in the 3.0 Tesla research MRI scanner at Aberdeen Royal Infirmary. Patients were placed prone in the MRI scanner with the hand outstretched above the head in the so-called “Superman” position. A specially designed wrist and hand coil was used. Under the expertise of radiographers and physicists, image capture encompassed four novel scanning sequences in order to make a volumetric