Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the
Introduction. Patellofemoral pain and instability can be quantified by using the tibial tuberosity to trochlea groove (TT-TG) distance with more than or equal to 20mm considered pathological requiring surgical correction. Aim of this study is to determine if knee joint rotation angle is predictive of a pathological
Introduction. Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. We have developed a balanced gap technique in posterior stabilized total knee arthroplasty using an original instrument. Patellar instability is associated with an increased the tibial tubercle and the center of the groove (TT-TG) distance > 20 mm, and
Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the variance of the model point cloud, this analysis automatically calculates longitudinal, vertical and mid-lateral axes. Using the defined references, absolute or relative orientations of the bones can be calculated in 3D. In 19 diabetic patients, 3D reconstructed bone models of the foot under load were combined with plantar pressure measurement. Significant correlations were found between bone orientations, heights above the ground, and pressure values, revealing anatomic areas potentially prone to ulceration. In 4 patients enrolled for total ankle arthroplasty, preoperative 3D reconstructions were used for prosthetic design customization, allowing prosthesis-bone mismatch to be minimized. 20 knees with femoral ligament reconstruction were acquired with WB-CBCT and standard CT (in unloading). Bone reconstructions were used to assess congruency angle and patellar tilt and
A risk factor for patellofemoral instability is trochlear dysplasia. Trochleoplasty is a surgical procedure used to reshape the trochlear groove to improve patellar stability. This study seeks to compare pre-op MRI measurements and post operative MRI measurements for patients who have undergone trochleoplasty in correlation with their clinical outcomes scores. Data was collected from a database of patients known to have trochlear dysplasia who underwent trochleoplasty. Radiological Data was collected pre-op and subsequent post op MRI data collected included
Statement of purpose. To determine whether the Q-angle, measured in a defined and reproducible manner, correlates with the TT-TG distance in patients with patellar instability. Methods and results. The Q-angle represents the angle between the vector of action of the quadriceps and patellar tendon. The normal angle is 14. +/−. 3° in males and 17. +/−. 3° in females. An increased Q-angle is associated with an increased risk of patellar instability, although there is disagreement on its reliability and validity. It can be affected by the anatomical points used to record the measurement, the position of the limb and whether the quadriceps are relaxed or contracted.
Background. The goal of patellofemoral arthroplasty (PFA) is to replace damaged cartilage, and to correct underlying deformities, to reduce pain and prevent maltracking. We aimed to determine how PFA modifies patellar height, tilt, and tibial tuberosity to trochlear groove (TT-TG) distance. The hypothesis was that PFA would correct trochlear dysplasia or extensor mechanism malalignment. Methods. The authors prospectively studied a series of 16 patients (13 women and 3 men) aged 64.9 ± 16.3 years (range, 41 to 86) that received PFA. All knees were assessed pre-operatively and six months post-operatively using frontal, lateral, and ‘skyline’ x-rays, and CT scans to calculate patellar tilt, patellar height and tibial tuberosity–trochlear groove (TT-TG) distance. Results. The inter-observer agreement was excellent for all parameters. (ICC > 0.95). Pre-operatively, the median patellar tilt without quadriceps contraction (QC) was 17.5° (range, 5.3°–33.4°) and with QC was 19.8° (range, 0°–52.0°). The median Caton- Deschamps Index (CDI) was 0.91 (range, 0.80–1.22) and TT-TG distance was 14.5mm (range, 4.0–22.0). Post-operatively, the median patellar tilt without QC was 0.3° (range, −15.3°–9.5°) and with QC was 6.1° (range, −11.5°–13.3°). The median CDI was 1.11 (range, 0.81–1.20) and TT-TG distance was 10.1mm (range, 1.8–13.8mm). Conclusion. The present study demonstrates that, beyond replacing arthritic cartilage, trochlear-cutting PFA improves patellofemoral congruence by correcting trochlear dysplasia and standardizing radiological measurements as patellar tilt and
Primary total knee arthroplasty (TKA) is a reliable
procedure with reproducible long-term results. Nevertheless, there
are conditions related to the type of patient or local conditions
of the knee that can make it a difficult procedure. The most common
scenarios that make it difficult are discussed in this review. These
include patients with many previous operations and incisions, and
those with severe coronal deformities, genu recurvatum, a stiff knee,
extra-articular deformities and those who have previously undergone
osteotomy around the knee and those with chronic dislocation of
the patella. Each condition is analysed according to the characteristics of
the patient, the pre-operative planning and the reported outcomes. When approaching the difficult primary TKA surgeons should use
a systematic approach, which begins with the review of the existing
literature for each specific clinical situation. Cite this article: