Young patients are at increased risk of revision after primary THA (THA). The bearing surface may be of importance for the longevity of the joint. We aimed to compare the risk of revision of primary stemmed cementless THA with MoM and CoC with metal-on-highly-crosslinked-polyethylene (MoXLP) bearings in patients between 20–54 years. From NARA, we included 2,153 MoM, 4,120 CoC and 10,329 MoXLP THA operated between 1995 and 2017. Kaplan-Meier estimator was used for calculation of
Satisfactory intermediate and long-term results of rotational acetabular osteotomy (RAO) for the treatment of early osteoarthritis secondary to developmental dysplasia of the hip have been reported. The purpose of this study is to examine the 30-year results of RAO. Between 1987 and 1994, we treated 49 patients (55 hips) with RAO for diagnosis of pre- OA or early-stage OA. Of those patients, 35 patients (43 hips) were available at a minimum of 28 years. The follow-up rate was 78.2% and the mean follow-up was 30.5 years. The mean age at the time of surgery was 34 years. Clinical evaluation was performed with the Merle d'Aubigne and Postel rating scale, and radiographic analyses included measurements of the center-edge angle, acetabular roof angle, and head lateralization index on preoperative, postoperative AP radiographs of the pelvis. Postoperative joint congruency was classified into four grades. The radiographic evidence of progression of OA was defined as the minimum joint space less than 2.5mm. The mean preoperative clinical score was 14.0, which improved to a mean of 15.3 at the time of the latest follow-up. The mean center-edge angle improved from 0.6° preoperatively to 34° postoperatively, the mean acetabular roof angle improved from 28.4°preoperatively to 1.0°postoperatively, the mean head lateralization index improved from 0.642 preoperatively to 0.59 postoperatively. Postoperative joint congruency was excellent in 11 hips, good in 29 hips, and fair in 3 hips. Nineteen patients (20 hips) had radiographic OA progression, and 10 patients (11 hips) were converted to
Total hip arthroplasty (THA) is one of the most successful and commonly performed surgical interventions worldwide. Based on registry data, at one-year post
Background: Structural hip deformities including developmental dysplasia of the hip (DDH) and femoroacetabular impingement (FAI) are thought to predispose patients to degenerative joint changes. However, the natural history of these malformations is not clearly delineated. Methods: Seven-hundred twenty-two patients ≤55 years that received unilateral primary total hip arthroplasty (THA) from 1980–1989 were identified. Pre-operative radiographs were reviewed on the contralateral hip and only hips with Tönnis Grade 0 degenerative change that had minimum 10-year radiographic follow-up were included. Radiographic metrics in conjunction with the review of two experienced arthroplasty surgeons determined structural hip diagnosis as DDH, FAI, or normal morphology. Every available follow-up AP radiograph was reviewed to determine progression from Tönnis Grade 0–3 until the time of last follow-up or operative intervention with
Purpose: The purpose of this study was to determine the greater than 20 year survivorship of the PCA total hip arthroplasty (THA) in patients with severe hip osteoarthritis. Method: A prospective follow-up of 315 consecutive patients treated with a PCA cementless THA in patients with hip osteoarthritis was performed. Patients had postoperative assessments and radiographs every two years. Overall THA, femoral stem and acetabular cup revisions and Kaplan-Meier survivorship was determined. Revision rates and survivorship was also investigated across gender. Results: The mean age of our patients was 61 years old (range 20 to 86) with 47% female patients. 226 cases used a 26mm articulation and 89 cases a 32mm articulation. At 23 years follow-up, 188(60%) patients were alive with retained implants while 85(27%) were deceased with still implants that were functioning well. Forty-two cases (13%) were revised (30 sockets, 13 stems), five of which later deceased. The 20 year Kaplan Meier survivorship for the overall THA, stem component and acetabular cup were 86%, 97% and 90% respectively. Survivorship of the acetabular cup for 26mm and 32mm articulations was 92% and 85% respectively (p=0.016). Females had a worse
Many factors can negatively impact acetabular component positioning including poor visualization, increased patient size, inaccuracies of mechanical guides, and inconsistent precision of conventional instruments and techniques, and changes in patient positioning. Improper orientation contributes to increased dislocation rates, leg length discrepancies, altered hip biomechanics, component impingement, acetabular component migration, bearing surface wear, and pelvic osteolysis thus affecting revision rates and long-term survivorship. Despite the established definitions of acetabular safe zones, recent analysis of U.S. Medicare THA data found dislocation rates during the first six months to be 3.9% for primary surgeries and 14.4% for revision surgeries. Accurate and precise acetabular component orientation during initial THA is an increasingly important factor in decreasing revision THA; a recent report cites instability and dislocation as the primary cause of revision accounting for 22.5% of cases. Larger femoral heads and alternative bearing couples are less tolerant of variation in acetabular orientation and thus are poor substitutes for proper acetabular component placement. Variability in acetabular orientation has been reported to have both an inter-surgeon and an intra-surgeon component; pre-surgical templating combined with intraop-erative measurements is subject to inconsistencies and errors. Current methods for determining acetabular orientation include preoperative imaging such as CT scans, intraoperative imaging such as plain radiographs and fluoroscopy, and intraoperative anatomical tests. Combining the concepts of patient-specific morphology (PSM) and quantitative technologies (QuanTech) such as computer-assisted navigation (CAN) has the potential to maximise range of motion and to further improve acetabular component orientation through improved accuracy and precision. PSM refers to the practice of allowing the form and structure of the patient’s hip joint to guide surgical reconstruction and component placement thus creating an individualised and more accurate “target zone”; unlike “safe zones,” PSM does not rely on averages. Although gross anatomic changes may make it difficult to use PSM, certain structures may be used as guide-posts for orientation, alignment, and stability in most patients. At present, there are three options when considering anatomic landmarks as guides for acetabular component placement: bony landmarks, soft tissue landmarks, or a combination. QuanTech has been shown to increase the precision of component placement by reducing intra-surgeon deviation. Some pitfalls of current CAN techniques result from maintaining camera line of sight during surgery, registration process, and pin placement. Performing THA using smaller incisions can impose additional complications as well as risks for errors in component positioning; QuanTech has the potential to provide greater visualization and precision, thus decreasing the impact of those constraints. THA has become one of the most common and successful orthopaedic procedures; its efficacy at relieving pain and its ability to help patients have improved quality of life is without dispute yet results continue to vary with inter-surgeon and intra-surgeon differences. As the population needing THA increases, the prevalence of complications and problems will increase, even if the percentage of complications decreases. Coupling PSM with QuanTech such as CAN may allow the surgeon to decrease variability and more consistently implant THA components based on each patient’s individualized requirements. The goal of combining PSM and CAN is to further reduce inter-and intra-surgeon variation, thereby decreasing outliers, complications, and revision rates, and possibly narrowing the gap between specialist and generalist. More accurate and precise acetabular component orientation correlates with better hip biomechanics, translating into better function, fewer dislocations, fewer impingements, maximized safe range of motion, less wear, and therefore less aseptic loosening and improvements in survivorship of primary THA. Decreasing revision rates, combined with the benefits listed above, could translate into increased