Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 8 - 8
1 Jun 2021
Giorgini A Tarallo L Porcellini G Micheloni G
Full Access

Introduction. Reverse shoulder Arthroplasty is a successful treatment for gleno-humeral osteoarthritis. However, components loosening and painful prostheses, related to components wrong positioning, are still a problem for those patients who underwent this kind of surgery. Several new technology has been developed the improve the implant positioning. CT-based intraoperative navigation system is a suitable technology that allow the surgeon to prepare the implant site exactly as planned with preoperative software. Method. Thirty reverse shoulder prostheses were performed at Modena Polyclinic using GPS CT-based intraoperative navigation system (Exactech, Gainsville, Florida). Walch classification was used to assess glenoid type. Planned version and inclination of the glenoid component, planned seating, final version and inclination of the reamer were recorded. Intraoperative and perioperative complication were recorded. Planned positioning was conducted aiming to the maximum seating, avoiding retroversion >10° and superior inclination. Results. Eight patients were male, 22 were female. Mean age was 75 years old (range 58–87). 4 glenoid were type B3, four were B2, 10 cases were B1, 12 case were A1/A2. Posterior or superior augment was used in 15 cases. Mean planned seating was 93%. Mean preoperative version was -7.5±6.9°; Mean planned version was -2±2.8°; Mean intraoperative measured version was -1.9±2.8°; no statistical difference was found between planned and intraoperative version (p=0.16). Mean preoperative inclination was 1.8±6.°; Mean planned inclination was -2.2±2.4°; Mean intraoperative measured inclination was -2.1.9±2.3°; no statistical difference was found between planned and intraoperative version or inclination (respectively p=0.16 and p=0.32). Mean surgical time was 71 minute (range 51–82). Three cases of coracoid ruptures were reported, 1 failure of the system occurred. Discussion. GPS navigation system allows the surgeon to prepare the implant site as planned on Preoperative software in Reverse shoulder arthroplasty, with no statistical difference between planned orientation and intraoperative measured orientation. That means that even in the most difficult cases the surgeon is able to find a good positioning (93% seating)and to replicate it in the operative room. Only one failure of the system occurred, because too much time was passed between CT scan and surgery (9 months). Three coracoid fractures occurred in the first 10 cases: these could be addressed to a lack of confidence with the double lateralization of this prosthesis which increase tensioning on the coracoid and a lack of confidence in tracker positioning, which should be made as proximal as it is possible. Finally, the system needs several improvements to be considered a breakthrough technology, such as humeral component positioning and final control of the implant, but by now is a useful way to improve our surgery, especially in difficult cases


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 136 - 136
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION. 3D preoperative planning software for anatomic and reverse total shoulder arthroplasty (ATSA and RTSA) provides additional insight for surgeons regarding implant selection and placement. Interestingly, the advent of such software has brought previously unconsidered questions to light on the optimal way to plan a case. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current glenoid implant selection and placement. METHODS. 172 ASES members completed an 18-question survey on their thought process for how they select and place a glenoid implant for both ATSA and RTSA procedures. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into three cohorts based on their responses to usage of 3D preoperative planning software: high users, seldom users, and non-users. Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement. RESULTS. 76 surgeons were grouped into the high user cohort, 66 into the seldom user cohort, and 30 into the non-user cohort. 61.9% of high users and 74.1% of seldom users performed >75 shoulder arthroplasties per year, whereas only 19.9% of non-users performed >75 arthroplasties per year (Figure 1). When questioned on glenoid implant type selection (augmented vs. non-augmented components), 80.3% of high users reported augment usage for both ATSA and RTSA, with using augments >45% of the time in 18.4% of ATSA cases and in 22.3% of RTSA cases. For seldom users, 80.3% reported augment usage in ATSA cases, and 70.3% in RTSA cases. Seldom users reported augment usage >45% of the time in 4.5% of ATSA cases and in 1.6% of RTSA cases. For non-preoperative planning users, 53.3% reported using augments in ATSA cases, and 48.3% for RTSA cases. Non-users used augmented glenoid components >45% of the time in 6.6% of ATSA cases and in 6.8% of RTSA cases. For resultant implant superior inclination in RTSA, 40.8% of high users aim for 0° of inclination, followed by 31.8% for seldom users and 16.7% of non-users (Figure 2). CONCLUSION. The results of this study show that 3D preoperative planning software has an influence on the decision making process when planning a shoulder arthroplasty. High volume shoulder arthroplasty surgeons report higher preoperative planning software usage than low volume surgeons, suggesting the utility of such software. Augmented glenoid component usage for both ATSA and RTSA is also higher for surgeons that use preoperative planning software, which either suggests the utility of augmented glenoid components, or that the use of such software creates the perceived need for augmented glenoid components. Lastly, surgeons who preoperatively plan tend to orient their glenoid components differently, which could suggest either a better understanding of the anatomy through the use of the software, or an influence on mindset regarding implant orientation resulting from software usage. This highlights an area for future work that could correlate clinical outcome data to implant selection and placement to prove what is the optimal plan for a given patient. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 131 - 131
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION. The advent of CT based 3D preoperative planning software for reverse total shoulder arthroplasty (RTSA) provides surgeons with more data than ever before to prepare for a case. Interestingly, as the usage of such software has increased, further questions have appeared over the optimal way to plan and place a glenoid implant for RTSA. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current RTSA implant selection and placement. METHODS. 172 ASES members completed an 18-question survey on their thought process for how they select and place a RTSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement. RESULTS. 70 surgeons were grouped into the LV cohort, and 102 surgeons were grouped into the HV cohort. 46.1% of surgeons in the HV cohort reported using a preoperative planning software for the majority of cases, 48% reported seldom use, and 5.9% reported no use. In the LV cohort, 41.4% reported use for the majority of cases, 24.3% reported seldom use, and 34.3% reported no use (Figure 1). When questioned on what percentage of RTSA cases do surgeons use augmented glenoid implants, 26.7% in the HV cohort responded never using augments vs. 32.4% in the LV cohort, 32.7% responded using augments <15% of the time in the HV cohort vs. 30.9% in the LV cohort, 26.7% responded using augments between 15–45% of the time in the HV cohort vs. 27.9% in the LV cohort, and 13.8% responded using augments >45% of the time in the HV cohort vs. 8.8% in the LV cohort (Figure 2). When asked what the maximum allowable superior inclination for a RTSA glenoid implant is, surgeons answered 10° 20.6% of the time in the HV cohort vs. 30% in the LV cohort, 5° 18.6% of the time in the HV cohort vs. 25.7% in the LV cohort, 0° 38.2% of the time in the HV cohort vs. 25.7% in the LV cohort, and no fixed degree 22.5% of the time in the HV cohort vs. 18.6% in the LV cohort (Figure 3). CONCLUSION. The results of this study show that even within a group of highly trained surgeons, there are widely varying opinions on how to plan the optimal RTSA case. Variation between high and low volume surgeons reveals even greater differences, suggesting that experience affects thought pattern. Despite these differences, there is no way to prove the optimal implant selection and placement without consistent data collection and long-term clinical outcomes. Machine learning on large preoperative planning databases combined with clinical outcomes data may provide further clarity on optimal implant placement and selection. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 6 - 6
1 May 2019
Jobin C
Full Access

Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to reverse replacement with reaming to correct version or structural bone grafting or metallic augmentation of the bone deficiency. Shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complications and revisions. Hemiarthroplasty has limited benefit for pain relief and function especially if eccentric glenoid wear exists. Bone loss with >15 degrees of retroversion likely requires version correction include bone-grafting, augmented glenoid components, or reverse total shoulder replacement. Asymmetric reaming may improve version but is limited to 15 degrees of version correction in order to preserve subchondral bone and glenoid bone vault depth. Bone-grafting of glenoid wear and defects has had mixed results with graft-related complications, periprosthetic radiolucent lines, and glenoid component failure of fixation. Implantation of an augmented wedge or step polyethylene glenoid component improves joint version while preserving subchondral bone, but is technically demanding and with minimal short term clinical follow-up. A Mayo study demonstrated roughly 50% of patients with posteriorly augmented polyethylene had radiolucent lines and 1/3 had posterior subluxation. Another wedge polyethylene design had 66% with bone ingrowth around polyethylene fins at 3 years. Long term outcomes are unknown for these new wedge augmented glenoid components. Reverse shoulder arthroplasty avoids many risks of anatomic replacement glenoid component fixation and stability but is associated with a high complication rate (15%) including neurologic and baseplate loosening and often requires structural bone grafting behind the baseplate with suboptimal outcomes or metallic augmented baseplates with limited evidence and short term outcomes. Reverse replacement with baseplate bone grafting or metal augmentation is technically challenging due to limited native glenoid bone stock available for baseplate component ingrowth and long term fixation. Failure to correct glenoid superior inclination and restore neutral version within 10 degrees increases the risks of reverse baseplate failure of fixation, pull out, and failure of reverse replacement. Reverse baseplate failure rates in patients with severe glenoid bone loss and concomitant glenoid bone grafting range from 5–11%. The minimum native glenoid bony contact with the baseplate is unknown but likely is approximately 1cm of native bone contacting a central ingrowth post and a minority (∼15–25%) of native glenoid contacting the backside of the baseplate. Failure to correct posterior bone loss can lead to retroversion of the baseplate, reduced external rotation, posterior scapular notching, and posteromedial polyethylene wear. In summary, shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complication and revision


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 63 - 63
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION. Preoperative planning software for anatomic total shoulder arthroplasty (ATSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in ATSA. METHODS. CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided three implant types: a standard non-augmented glenoid component, and an 8° and 16° posterior augment wedge glenoid component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior- posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case. RESULTS. Five cases were excluded due to extreme glenoid wear. For resultant implant version, a bimodal distribution was observed with a local maxima occurring at 0 degrees, and a bell-shaped distribution at −5° of version. Upon individual surgeon analysis, it was revealed that certain surgeons had a preference to correct to 0 degrees, whereas others were more accepting of residual version. Shoulders ranged in native version from 0° to −27° with an average of −11°, indicating a high frequency of posterior glenoid wear. The frequency of different implants used for each degree of version shows that standard implants were never used when version was > −11°. Conversely, 16° augmented glenoids were never used when the version was < −9°. Based on this distribution, version was divided into 3 ranges: < −6°, −7 to −14°, and > −15°. Standard glenoids were used 79% of the time when the version was <−6°. 8° augmented glenoids were used 80% of the time when the version was between −7° and −14°, and 75% of the time when the version was > −15°. In the latter case, 16° augments were used in the other 25%. For inclination in ATSA, the same trends of a bimodal distribution seen for version were less pronounced. A local maxima of plans were focused around zero degrees, with some surgeons being more accepting of superior inclination in ATSA. CONCLUSION. While there was limited consensus on the optimal reconstruction in any one case, there appear to be thresholds of retroversion that favor the use of augmented glenoid components based on frequency of selection. Our data suggests when retroversion exceeds −7°, some degree of augmentation is helpful in achieving the goals of version correction while limiting bone loss through corrective reaming. Longer term clinical outcomes on specific implant positions will help to define true optimal implant placement


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims

Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM.

Methods

With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 124 - 124
1 Feb 2017
Fujii Y Fujiwara K Endou H Tetsunaga T Miyake T Yamada K Ozaki T Abe N Sugita N Mitsuishi M Takayuki I Nakashima Y
Full Access

Introduction. CT-based navigation system in total hip arthroplasty (THA) is widely used to achieve accurate implant placement. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analysis in order to use the system more effectively. We compared the accuracy of registration with this navigation system and land mark matching type navigation system. In this study, we evaluated the influence of the surgical approach to the accuracy of registration. Methods. Between June 2015 and February 2016, 28 consecutive uncemented THAs were performed in 26 patients. The preoperative diagnosis was osteoarthritis in 20 hips, osteonecrosis of the femoral hips in 5, and rheumatoid arthritis in 3. The newly developed navigation system was a CT based, surface matching type navigation system. We used newly developed navigation system and commercially available land-mark type CT-based navigation system in the setting of acetabular sockets under the same condition. After we fixed the cementless cup, we measured the cup setting angle of inclination and anteversion on each navigation system. Postoperative assessment was performed using CT one week after the operation, and measured the actual angle of the cup. Approach of operations were performed via posterolateral approach in 14 hips, and Hardinge approach in 14 hips. We calculated the absolute value of the cup angle difference between intra-operative value and post-operative value with each navigation system and compared the accuracy between each navigation system and surgical approach. Results. The mean inclination using the Land-mark type navigation(group L) was 38.3±3.8°, using our navigation system (group S) was 38.7±5.7 °, the mean anteverion on group L was 25.8±5.6°, and group S was 27.3±10.2°. The mean of actual inclination of the implants calculated by postoperative CT was 38.4±7.1°, the mean of actual anteversion was 25.8±8.3°. In comparison with the absolute value of the difference between intra-operative and post-operative date, the mean difference of inclination on group L was 6.5±5.7°, and group L was 3.7±3.1 °, the difference was significant (p<0.05). The mean difference of anteversion of group L was 4.7±4.6 °, group S was 4.0±3.3°. In group L, the mean of absolute value of the difference between intra-operative and post-operative date of inclination via Hardinge approach was 6.0±6.8°, and posterior approach was 7.9±4.5°. In group S, The mean difference of inclination via Hardinge approach was 3.0±1.8°, and posterior approach was 4.5±4.1°. In group L, The mean difference of anteversion of Hardinge approach was 4.2±4.1°, and posterior approach was 5.3±5.3°. In group S, The mean difference of anteversion of Hardinge approach was 3.8±3.5°, and posterior approach was 4.2±3.3°. Discussion. N-navi was superior on inclination of the acetabular socket setting. Considering surgical approach, the accuracy was not good via posterior approach. We should take surface matching points widely around the acetabulum, however, to take points of anterior the acetabulum via posterior approach was difficult because of the femur. It was the reason of decrease the accuracy via posterior approach. We should choose the area of surface matching points according to surgical approach to make the registration more accurate


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 461 - 469
1 Apr 2019
Lädermann A Schwitzguebel AJ Edwards TB Godeneche A Favard L Walch G Sirveaux F Boileau P Gerber C

Aims

The aim of this study was to report the outcomes of different treatment options for glenoid loosening following reverse shoulder arthroplasty (RSA) at a minimum follow-up of two years.

Patients and Methods

We retrospectively studied the records of 79 patients (19 men, 60 women; 84 shoulders) aged 70.4 years (21 to 87) treated for aseptic loosening of the glenosphere following RSA. Clinical evaluation included pre- and post-treatment active anterior elevation (AAE), external rotation, and Constant score.


Bone & Joint 360
Vol. 7, Issue 2 | Pages 23 - 25
1 Apr 2018