Aims. Psychoeducative prehabilitation to optimize surgical outcomes is relatively novel in
Due to well-known disadvantages of the autologous bone graft, many alternatives have been studied for a reliable
Aims. People with severe, persistent low back pain (LBP) may be offered lumbar
A novel EP4 selective agonist (KMN-159) was developed [1] and has been proven that it can act as an osteopromotive factor to repair critical-size femoral bone defects in rats at a dose-dependent manner [2]. Based on its osteopromotive properties, we hypothesized that KMN-159 could also aid in bone formation for
Background. Current clinical treatment for spinal instability requires invasive
Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for
Spinal diseases such as unstable fractures, infections, primary or secondary tumors or deformities require surgical stabilization with implants. The long-term success of this treatment is only ensured by a solid bony fusion. The size of the bony defect, the often poor bone quality and metabolic diseases increase the risk of non-union and make the case a great burden for the patient and a challenge for the surgeon. The goal of
Hip instability is one of the most common causes for total hip arthroplasty (THA) revision surgery. Studies have indicated that lumbar fusion (LF) surgery is a risk factor for hip dislocation. Instrumented
Biphasic calcium phosphate (BCP) with a characteristic needle-shaped submicron surface topography (MagnetOs) has attracted much attention due to its unique bone-forming ability which is essential for repairing critical-size bone defects such as those found in the posterolateral spine. Previous in vitro and ex-vivo data performed by van Dijk LA and Yuan H demonstrated that these specific surface characteristics drive a favorable response from the innate immune system. This study aimed to evaluate and compare the in vivo performance of three commercially-available synthetic bone grafts, (1) i-FACTOR Putty. ®. , (2) OssDsign. ®. Catalyst Putty and (3) FIBERGRAFT. ®. BG Matrix, with that of a novel synthetic bone graft in a clinically-relevant instrumented sheep posterolateral lumbar
Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the
Cervical and lumbar
Objectives. Understanding lumbar facet joint involvement and biomechanical changes post
Introduction. There is growing evidence that patients with lumbar
The range of allograft products for
Chronic low back pain (CLBP) is the most common cause of disability worldwide, and lumbar
Introduction. We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve
Objectives. We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision
The risk of blood transfusion in
This study aims to explore the trend in