Advertisement for orthosearch.org.uk
Results 1 - 20 of 51
Results per page:
Bone & Joint Research
Vol. 10, Issue 10 | Pages 629 - 638
20 Oct 2021
Hayashi S Hashimoto S Kuroda Y Nakano N Matsumoto T Ishida K Shibanuma N Kuroda R

Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured. Results. The mean values of absolute differences (postoperative CT-preoperative plan) were 1.7° (standard deviation (SD) 2.0) (inclination) and 2.5° (SD 2.1°) (anteversion) in DDH patients, and no significant differences were found between non-DDH and DDH patients. The mean absolute differences for 3D cup position were 1.1 mm (SD 1.0) (coronal plane) and 1.2 mm (SD 2.1) (axial plane) in DDH patients, and no significant differences were found between two groups. No significant difference was found either in cup alignment between postoperative CT and navigation record after cup screws or in the severity of DDH. Excellent restoration of leg length and combined offset were achieved in both groups. Conclusion. We demonstrated that robotic-assisted THA may achieve precise cup positioning in DDH patients, and may be useful in those with severe DDH. Cite this article: Bone Joint Res 2021;10(10):629–638


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 15 - 15
23 Feb 2023
Tay M Carter M Bolam S Zeng N Young S
Full Access

Source of the study: University of Auckland, Auckland, New Zealand. Unicompartmental knee arthroplasty (UKA) has benefits for patients with appropriate indications. However, UKA has a higher risk of revision, particularly for low-usage surgeons. The introduction of robotic-arm assisted systems may allow for improved outcomes but is also associated with a learning curve. We aimed to characterise the learning curve of a robotic-arm assisted system (MAKO) for UKA in terms of operative time, limb alignment, component sizing, and patient outcomes. Operative times, pre- and post-surgical limb alignments, and component sizing were prospectively recorded for consecutive cases of primary medial UKA between 2017 and 2021 (n=152, 5 surgeons). Patient outcomes were captured with the Oxford Knee Score (OKS), EuroQol-5D (EQ-5D), Forgotten Joint Score (FJS-12) and re-operation events up to two years post-UKA. A Cumulative Summation (CUSUM) method was used to estimate learning curves and to distinguish between learning and proficiency phases. Introduction of the system had a learning curve of 11 cases. There was increased operative time of 13 minutes between learning and proficiency phases (learning 98 mins vs. proficiency 85 mins; p<0.001), associated with navigation registration and bone preparation/cutting. A learning curve was also found with polyethylene insert sizing (p=0.03). No difference in patient outcomes between the two phases were detected for patient-reported outcome measures, implant survival (both phases 98%; NS) or re-operation (learning 100% vs. proficiency: 96%; NS). Implant survival and re-operation rates did not differ between low and high usage surgeons (cut-off of 12 UKAs per year). Introduction of the robotic-arm assisted system for UKA led to increased operative times for navigation registration and bone preparation, but no differences were detected in terms of component placement or patient outcomes regardless of usage. The short learning curve regardless of UKA usage indicated that robotic-arm assisted UKA may be particularly useful for low-usage surgeons


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 27 - 27
1 Feb 2021
Domb B Maldonado D Chen J Kyin C Bheem R Shapira J Rosinsky P Karom J
Full Access

Introduction. Primary robotic-arm assisted total hip arthroplasty (THA) yields more accurate and reproducible acetabular cup placement, nonetheless, data is scarce in terms of outcomes. The purpose of the present study was to report on patient-reported outcomes (PROMs) in a large group of patients who underwent robotic-arm assisted THA. The authors hypothesized that (1) patients who underwent robotic-arm assisted primary THA would achieve favorable and significant improvement in PROMs, (2) an accurate and reproducible acetabular cup placement with respect to the defined SafeZones would be obtained, and (3) a low rate of THA dislocation would be observed. Methods. Prospectively collected data were retrospectively reviewed between April 2012 to May 2017. Primary THA using Mako Robotic-Arm [Mako Surgical Corp. (Stryker), Fort Lauderdale, FL, USA] with minimum two-year follow-up for the Harris Hip Score (HHS) and the Forgotten Joint Score-12 (FJS-12) were included. Exclusion criteria were: bodymass index (BMI) > 40 kg/m2, age < 21-year old, worker's compensation, or unwilling to participate. Visual analog scale (VAS) for pain and patient satisfaction were obtained. Intraoperative measurements for leg-length, global offset, acetabular inclination and version were documented. Results. 501 hips were included (57.29% females), follow-up was 43.99 ± 15.59 months. Average age was 58.70 ± 9.41 years, and the BMI was 28.41 ± 4.55 kg/m2. The group reported HHS of 90.87 ± 13.45, FJS-12 of 79.97 ± 25.87, VAS of 1.20 ± 2.06, and patient satisfaction of 8.85 ± 2.08. Intraoperative values for acetabular inclination and version were 40.0° ± 2.2 ° and 20.5° ± 2.4° respectively. Revision due to instability was 0.2%. Conclusions. Patients who received primary robotic-arm assisted THA reported excellent results at 44-month follow-up for multiple PROMs. Consistency in acetabular cup placement accuracy was achieved in regard to the Lewinnek and Callanan safe-zones


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 7 - 7
1 Oct 2019
Catani F Ensini A Zambianchi F Illuminati A Matveitchouk N
Full Access

Introduction. Robotic technology has been applied to unicompartmental knee arthroplasty (UKA) in order to improve surgical precision in prosthetic component placement, restore knee anatomic surfaces, and provide a more physiologic ligament tensioning throughout the knee range of motion. Recent literature has demonstrated high reliability of robotic-arm assisted UKA in component placement and executing a soft-tissue tensioning plan, with excellent short-term survivorship. Few studies have investigated survivorship and patients' satisfaction at longer follow-ups. Therefore, the purpose of the present study was to determine the survivorship, clinical results and patients' satisfaction of robotic-arm assisted UKAs at a mid-term follow-up, with a minimum of 5 years of follow-up. Methods. The present retrospective study includes 252 patients (260 knees) who underwent robotic-arm assisted fixed bearing metal backed UKAs at a single centre between April 2011 and July 2013. The mean age at surgery was 66.2 years (SD 8.6). Post-operatively, patients were administered the Forgotten Joint Score-12 (FJS) and asked about their satisfaction level after knee surgery (grade from 1 to 5). Post-operative complications were recorded. Failure mechanisms, revisions and reoperations were also assessed. Kaplan-Meier survival curves were calculated, considering reoperation for all causes and revision as the events of interest. Results. A total of 223 patients (231 robotic-arm assisted UKAs) were assessed at a mean follow-up of 5.8 years post-operatively (88.5% follow-up rate, min. 60 months, max. 87 months). In 219 cases, a medial robotic-arm assisted UKA was implanted, in 12 cases a lateral implant was performed. Five medial robotic-arm assisted UKAs were revised, resulting in a survivorship of 98% (C.I. 96.0%–99.1%). One case underwent revision for prosthetic joint infection, one for tibial aseptic loosening, one for post-traumatic tibial plateau fracture, and two for unexplained pain. No lateral robotic-arm assisted UKAs were revised, resulting in a survivorship of 100%. On average, the FJS and the satisfaction level resulted 75.6 (SD 26.1) and 4.2 (SD 1.0) in medial UKAs, and 81.7 (SD 15.3) and 4.4 (SD 0.8) in lateral UKAs, respectively. In medial UKAs 83% of the examined cohort reported good/excellent FJS outcomes, while 92% of the lateral UKA patients had good/excellent FJS results. In medial UKAs, male patients resulted to have better FJS (p<0.01) and higher satisfaction level (p<0.03) compared to female patients, while no outcome differences were reported in patients with BMI>30 and among different age groups. Given the small number of lateral UKAs included in the present patients' cohort, no statistical analysis was performed on this group. Conclusion. In the present study, survivorship and clinical outcomes of a large cohort of 223 patients undergoing medial and lateral robotic-arm assisted UKAs were assessed at a mean of 5.8 years of follow-up. The overall survivorship was found to be 98%, with unexplained knee pain as the most common reason for UKA revision. The present study shows that robotic-arm assisted UKA patients had lower revision rates for aseptic loosening and osteoarthritis progression compared to conventional UKA at mid-term follow-up, as reported in the literature. The good post-operative clinical scores highlight the efficacy of robotic-arm assisted UKA in restoring knee function and relieving pain. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 99 - 99
1 Mar 2017
Domb B Rabe S Perets I Walsh J Close M Chaharbakhshi E
Full Access

Outpatient total hip arthroplasty (THA) has remained controversial and challenging. Traditional hospital stays following total joint arthroplasty were substantial and resulted in increased rates of morbidity, significant pain, and severe restriction in mobility. Advancements in the surgical approach, anesthetic regimens, and the initiation of rapid rehabilitation protocols have had an impact on the length of recovery following elective THA. Still, very few studies have specifically outlined outpatient hip arthroplasty and, thus far, none have addressed the use of robotic-arm navigation in outpatient THA. This article describes in detail the technique used to perform outpatient THA with the use of robotic-arm assistance. We believe that outpatient THA using robotic-arm assistance in combination with tissue-preserving surgery, multi-modal pain and nausea management, early rehabilitation, and stringent patient selection yields a suitable alternative to inpatient joint replacement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 76 - 76
1 Feb 2020
Zhang J Sawires A Matzko C Sodhi N Ehiorobo J Mont M Hepinstall M
Full Access

Background. Manually instrumented knee arthroplasty is associated with variability in implant and limb alignment and ligament balance. When malalignment, patellar maltracking, soft tissue impingement or ligament instability result, this can lead to decreased patient satisfaction and early failure. Robotic technology was introduced to improve surgical planning and execution. Haptic robotic-arm assisted total knee arthroplasty (TKA) leverages three-dimensional planning, optical navigation, dynamic intraoperative assessment of soft tissue laxity, and guided bone preparation utilizing a power saw constrained within haptic boundaries by the robotic arm. This technology became clinically available for TKA in 2016. We report our early experience with adoption of this technique. Methods. A retrospective chart review compared data from the first 120 robotic-arm assisted TKAs performed December 2016 through July 2018 to the last 120 manually instrumented TKAs performed May 2015 to January 2017, prior to introduction of the robotic technique. Level of articular constraint selected, surgical time, complications, hemoglobin drop, length of stay and discharge disposition were collected from the hospital record. Knee Society Scores (KSS) and range of motion (were derived from office records of visits preoperatively and at 2-weeks, 7-weeks and 3-month post-op. Manipulations under anesthesia and any reoperations were recorded. Results. Less articular constraint was used to achieve balance in the robotic group, with a higher incidence of cruciate retaining retention (92% vs. 55%, p < 0.01) and a trend towards lower use of varus-valgus constrained articulations (5% vs. 11%, p = 0.068). Robotic surgery increased mean operative time by 22 minutes (p < 0.001). Operative time improved by 26 minutes from the first 10 robotic cases to the last 10 robotic cases. The robotic group had a lower hospital length of stay (2.7 vs. 3.4 days, p < 0.001). Discharge home was not significantly different between robotic and manual groups (89% vs. 83%, p = 0.2). Postoperative Knee Society scores were similar between groups at each postoperative time interval. Robotic-arm assisted TKA patients demonstrated lower mean flexion contracture at 2-weeks (1.8 vs. 3.3 degrees, p < 0.01), 7-weeks (1.0 vs. 1.8 degrees, p <0.01), and 3-months (0.6 vs 2.1 degrees, p = 0.02) post-surgery, but these differences were small. Mean flexion did not differ between groups at 3-month follow-up, but motion was achieved with a significantly lower rate of manipulation under anesthesia in the robotic group (4% vs 17%, p = 0.013). Conclusion. Preliminary findings demonstrate robotic-arm assisted TKA is safe and efficacious with outcomes comparable, if not superior, to that of manually instrumented TKA. Keywords. total knee arthroplasty, robotic arm-assisted total knee arthroplasty. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 29 - 29
1 Feb 2021
Kolessar D Harding J Rudraraju R Hayes D Graham J
Full Access

Introduction. Robotic-arm assisted knee arthroplasty (rKA) has been associated with improved clinical, radiographic, and patient-reported outcomes. There is a paucity of literature, however, addressing its cost effectiveness. In the context of an integrated health system with an insurance plan and single source comprehensive data warehouse for electronic health records and claims data, we present an evaluation of healthcare costs and utilization associated with manual knee arthroplasty (mKA) versus rKA. We also examine the influence of rKA technology on surgeons’ practice patterns. Methods. Practice patterns of KA were assessed 18 months before and after introduction of robotic technology in April 2018. For patients also insured through the system's health plan, inpatient costs (actual costs recorded by health system), 90-day postoperative costs (allowed amounts paid by insurance plan), and 90-day postoperative utilization (length of stay, home health care visits, rehabilitation visits) were compared between mKA and rKA patients, stratified by total (TKA) or unicompartmental (UKA) surgery. Linear regression modeling was used to compare outcomes between the two pairs of groups (mKA vs. rKA, for both UKA and TKA). Log-link function and gamma error distribution was used for costs. All analyses were done using SAS statistical software, with p<0.05 considered statistically significant. Results. Overall KA volume increased 21%, from 532 cases in the pre-rKA period to 644 post-rKA introduction, with UKA surgeries increasing from 38 to 97 (155%). Of these KAs, 218 patients were insured through our system's health plan (38 rUKAs, 9 mUKAs, 91 rTKAs, and 80 mTKAs), allowing precise insurance claims analysis for postoperative utilization and cost. Patients with rKA had significantly lower mean home health costs (-90% difference for UKA, −79% difference for TKA, p<0.02) and home rehab costs (-64% difference for UKA, −73% difference for TKA, p≤0.007) than mKA patients. No significant differences were observed in outpatient rehab (visits or costs), total rehab costs, or length of stay. Mean total postoperative costs were significantly lower for rUKA than mUKA (-47% difference, p=0.02) but similar for TKA (p>0.05). There were no significant differences in total inpatient costs between MAKO and non-MAKO patients. Conclusion. Robotic-arm assisted KA can allow for increased UKA volume and potential for substantial cost savings over the total episode of care by reducing postoperative utilization and costs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 73 - 73
1 Feb 2020
Catani F Ensini A Zambianchi F Illuminati A Matveitchouk N
Full Access

Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in components’ placement, providing a physiologic ligament tensioning throughout knee range of motion. The purpose of the present study is to evaluate femoral and tibial components’ positioning in robotic-assisted TKA after fine-tuning according to soft tissue tensioning, aiming symmetric and balanced medial and lateral gaps in flexion/extension. Materials and Methods. Forty-three consecutive patients undergoing robotic-assisted TKA between November 2017 and November 2018 were included. Pre-operative radiographs were performed and measured according to Paley's. The tibial and femoral cuts were performed based on the individual intra-operative fine-tuning, checking for components’ size and placement, aiming symmetric medial and lateral gaps in flexion/extension. Cuts were adapted to radiographic epiphyseal anatomy and respecting ±2° boundaries from neutral coronal alignment. Robotic data were recorded, collecting information relative to medial and lateral gaps in flexion and extension. Results. Patients were divided based on the pre-operative coronal mechanical femoro-tibial angle (mFTA). Only knees with varus deformity (mFTA<178°), 29 cases, were taken into account. On average, the tibial component was placed at 1.2°±0.5 varus. Femoral component fine-tuning based on soft-tissues tensioning in extension and flexion determined the following alignments: 0.2°±1.2 varus on the coronal plane and 1.2°±2.2° external rotation with respect to the trans-epicondylar axis (TEA) as measured on the CT scan in the horizontal plane. The average gaps after femoral and tibial resections, resulted as follows: 19.5±0.8 mm on the medial side in extension, 20.0±0.9 mm on the lateral side in extension, 19.1±0.7 mm on the medial side in flexion and 19.5±0.7 mm on the lateral side in flexion. On average, the post-implant coronal alignment as reported by the robotic system resulted 2.0°±1.5 varus. Discussion. The proposed robotic-arm assisted TKA technique, aiming to preserve the integrity of the ligaments, provides balanced and symmetric gaps in flexion and extension and an anatomic femoral and tibial component's placement with post-implant coronal alignment within ±2° from neutral alignment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 38 - 38
1 Oct 2018
Hozack WJ
Full Access

Introduction. Robotic-arm total knee arthroplasty (RTKA) was developed to potentially improve accuracy of bone cuts, component alignment, soft tissue balance, and patient outcomes. There is a paucity of data demonstrating that RTKA is superior to conventional total knee arthroplasty (CTKA) in terms of any of these metrics. This prospective comparative multicenter study was designed with these purposes in mind. Methods. Patients were enrolled between June 1st, 2016 and March 31st, 2018 in a prospective, non-randomized, open-label, multicenter, consecutive comparative cohort study comparing RTKA and CTKA. Only patients who satisfied the following inclusion criteria were included: body mass index (BMI) ≤ 40kg/m2, primary unilateral TKA procedure, at least 18 years of age, and no joint infection. The following data were collected for analysis:. Preoperative data on component size prediction from CT scans. Intraoperative data on bone resection levels and joint line maintenance. Functional activity scores, patient-reported symptoms, satisfaction and expectation scores using The New Knee Society Scoring System. Radiographic results, specifically coronal alignment. Results. For femoral components implanted, 82% were the exact size as predicted by the robotic-software and the remaining 18% were within 1 size (100% within 1 size). For tibial implants, 69% were the exact size of what the robotic-software predicted and 29% were within 1 size (98% within 1 size). RTKAs had significantly less distal lateral femoral resection (5.55 vs. 7.11 mm), distal medial femoral resection (6.89 vs. 7.97 mm), lateral tibial resection (7.76 vs. 8.54 mm), and medial tibial resection (4.11 vs. 5.56 mm, p<0.05) compared to CTKA. Joint line restoration was comparable between RTKA and CTKA, but required less tibial bone removal when using robotic techniques. Pre-operatively, all demographic, functional, symptom, satisfaction, and expectation measures were similar between treatment groups (all p<0.05, Tables 1–5). Those who underwent RTKA had significantly higher mean functional activity walking and standing score improvements from baseline to 4–6 weeks (1.4 vs. −1.2 points; p=0.019) and to 6 months (9.6 vs. 6.9 points; p=0.017) after surgery compared to CTKA. The mean overall functional activity score improvement from baseline to 1-year post-surgery was also higher for RTKA compared to CTKA (36.8 vs. 15.0 points; p=0.020). For all other parameters (standard activities, advanced activities, pain with walking, pain with stairs, satisfaction and expectation scores), score changes from baseline were not significantly different between groups, though many trended slightly higher for RTKA. Radiographic evaluation of RTKA demonstrated that varus deformity was corrected to neutral in 96% of cases and valgus deformity was corrected in 100%. Conclusion. To the best of our knowledge, this is the first study to prospectively evaluate outcomes of RTKA patients compared to CTKA. A number of positive early effects were seen with RTKA. This patient cohort will continue to be followed, and these findings may translate into longer-term patient reported outcomes improvement, longer component survivorship and cost savings. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 17 - 17
1 Feb 2021
Catani F Marcovigi A Zambianchi F
Full Access

Introduction

Dislocation is a major cause of Total Hip Arthroplasty (THA) early failure and is highly influenced by surgical approach and component positioning. Robotic assisted arthroplasty has been developed to improve component positioning and therefore reduce post-operative complications.

The purpose of this study was to assess dislocation rate in robotic total hip arthroplasty performed with three different surgical approaches.

Methods

All patients undergoing Robotic Arm-Assisted THA at three centers between 2014 and 2019 were included for assessment. After exclusion, 1059 patients were considered; an anterior approach was performed in 323 patients (Center 2), lateral approach in 394 patients (Center 1 and Center 2) and posterior approach in 394 patients (Center 1 and Center 3).

Episodes of THA dislocation at 6 months of follow up were recorded. Stem anteversion, Cup anteversion, Cup inclination and Combined Anteversion were collected with the use of the integrated navigation system.

Cumulative incidence (CI), incidence rate (IR) and risk ratio (RR) were calculated with a confidence interval of 95%.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 219 - 219
1 Jun 2012
Sinha R Cutler M
Full Access

INTRODUCTION

we have previously reported that bone preparation is quite precise and accurate relative to a preoperative plan when using a robotic arm assisted technique for UKA. However, in that same study, we found a large variation between intended and final tibial implant position, presumably occuring during cement curing. In this study, we reviewed a subsequent cohort of patients in which the tibial and femoral components were cemented individually with ongoing evaluation of tibial component position during cement curing.

METHODS AND MATERIALS

Group 1 comprised the simultaneous cementing techniquegroup of patients, previously reported on, although their x-rays were re-analyzed. Group 2 consisted of the individual cementing technique cohort. All implants were identical, specifically a flat, inlay all-polyethylene tibial component. Postoperative x-rays from each cohort of patients were evaluated using image analysis software. Statistical evaluation was performed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 136 - 136
1 Dec 2013
Nam D Maher P Ranawat A Padgett DE Mayman DJ
Full Access

Background:

Numerous studies have reported the importance of acetabular component positioning in decreasing dislocation rates, the risk of liner fractures, and bearing surface wear in total hip arthroplasty (THA). The goal of improving acetabular component positioning has led to the development of computer-assisted surgical (CAS) techniques, and several studies have demonstrated improved results when compared to conventional, freehand methods. Recently, a computed tomography (CT)-based robotic surgery system has been developed (MAKO™ Robotic Arm Interactive Orthopaedic System, MAKO Surgical Corp., Fort Lauderdale, FLA, USA), with promising improvements in component alignment and surgical precision. The purpose of this study was to compare the accuracy in predicting the postoperative acetabular component position between the MAKO™ robotic navigation system and an imageless, CAS system (AchieveCAS, Smith and Nephew Inc., Memphis, TN, USA).

Materials and Methods:

30 THAs performed using the robotic navigation system (robotic cohort) were available for review, and compared to the most recent 30 THAs performed using the imageless, CAS system (CAS cohort). The final, intraoperative reading for acetabular abduction and anteversion provided by each navigation system was recorded following each THA. Einsel-Bild-Roentgen analysis was used to measure the acetabular component abduction and anteversion based on anteroposterior pelvis radiographs obtained at each patient's first, postoperative visit (Figure 1). Two observers, blinded to the treatment arms, independently measured all the acetabular components, and the results were assessed for inter-observer reliability.

Comparing the difference between the final, intraoperative reading for both acetabular abduction and anteversion, and the radiographic alignment calculated using EBRA analysis, allowed assessment of the intraoperative predictive capability of each system, and accuracy in determining the postoperative acetabular component position. In addition, the number of acetabular components outside of the “safe zone” (40° + 10° of abduction, 15° + 10° of anteversion), as described by Lewinnek et al., was assessed. Lastly, the operative time for each surgery was recorded.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 115 - 115
11 Apr 2023
Tay M Carter M Bolam S Zeng N Young S
Full Access

Unicompartmental knee arthroplasty (UKA) has a higher risk of revision than total knee arthroplasty, particularly for low volume surgeons. The recent introduction of robotic-arm assisted systems has allowed for increased accuracy, however new systems typically have learning curves. The objective of this study was to determine the learning curve of a robotic-arm assisted system for UKA. Methods A total of 152 consecutive robotic-arm assisted primary medial UKA were performed by five surgeons between 2017 and 2021. Operative times, implant positioning, reoperations and patient-reported outcome measures (PROMS; Oxford Knee Score, EuroQol-5D, and Forgotten Joint Score) were recorded. There was a learning curve of 11 cases with the system that was associated with increased operative time (13 minutes, p<0.01) and improved insert sizing over time (p=0.03). There was no difference in implant survival (98.2%) between learning and proficiency phases (p = 0.15), and no difference in survivorship between ‘high’ and ‘low’ usage surgeons (p = 0.23) at 36 months. There were no differences in PROMS related to the learning curve. This suggested that the learning curve did not lead to early adverse effects in this patient cohort. The introduction of a robotic-arm assisted UKA system led to learning curves for operative time and implant sizing, but there was no effect on patient outcomes at early follow- up. The short learning curve was independent of UKA usage and indicated that robotic-arm assisted UKA may be particularly useful for low-usage surgeons


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 58 - 58
23 Jun 2023
Fontalis A The CS Plastow R Mancino F Haddad FS
Full Access

In-hospital length of stay (LOS) and discharge disposition following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, we wished to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge disposition following robotic-arm assisted (RO THA) versus conventional technique Total Hip Arthroplasty (CO THA). This large-scale, single institution study included patients of any age undergoing primary THA (N = 1,732) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for Post Anaesthesia Care Unit (PACU) admission, anaesthesia type, readmission within 30 days and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge. The median LOS in the RO THA group was 54 hours (34, 78) versus 60 (51, 100) in the CO THA group, p<0.001. Discharge disposition was comparable between the two groups. In the multivariate model, age, need for PACU admission, ASA score > 2, female gender, general anaesthesia and utilisation of the conventional technique were significantly associated with LOS > 2 days. Our study showed that robotic-arm assistance was associated with a shorter LOS in patients undergoing primary THA and no difference in discharge destination. Our results suggest that robotic-arm assistance could be advantageous in partly addressing the upsurge of hip arthroplasty procedures and the concomitant health care burden; however, this needs to be corroborated by long-term cost effectiveness analyses and data from randomised controlled studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 57 - 57
23 Jun 2023
Konishi T Sato T Motomura G Hamai S Kawahara S Hara D Utsunomiya T Nakashima Y
Full Access

Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH. A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle. Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA). Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 50 - 50
1 Jul 2022
Fontalis A Kayani B Asokan A Haddad IC Tahmassebi J Konan S Oussedik S Haddad FS
Full Access

Abstract. Introduction. The postoperative inflammatory response may be implicated in the aetiology of patient dissatisfaction following Total Knee Arthroplasty. Robotic-arm assisted TKA has been associated with reduced bone and soft tissue trauma. The objective of this Randomised Controlled Trial was to compare the inflammatory response in conventional Jig-based versus robotic arm-assisted TKA and examine the relationship with patient reported outcome measures and functional outcomes. Methodology. 30 patients with knee osteoarthritis were randomised to either conventional or robotic-arm assisted TKA. Blood samples were collected for up to 28 days post-operatively and intraarticular drain samples at 6 and 24 hours, to ascertain the systemic and local inflammatory responses. The Spearman's correlation was utilised to evaluate the relationship with PROMs and functional outcomes. Results. Reduced IL-6 drain fluid levels were noted at 6 hours [798.54 vs. 5699.2, p=0.026] and 24 hours and IL-8 at 6 hours. Patients in the robotic group had lower pain scores on post-operative day 1, 2 and 7. PROM scores were comparable at 2 years. Statistically significant correlations were evident between all serum markers except IL-1b on the 7th postoperative day and self-reported pain; between drain IL-8 levels and self-reported pain; between drain IL-6, IL-8 and TNF-a levels (6-hours) and knee flexion and extension. Conclusion. Robotic-arm assisted TKA was associated with a reduced postoperative local and systemic inflammatory responses. A moderate correlation with self-reported pain, knee flexion and extension was also demonstrated. Longer-term data and further validation on a larger scale, will be key to developing the optimal TKA procedure


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2020
Gustke KA
Full Access

Introduction. The purpose of this study was to determine if better outcomes occur with use of robotic-arm assistance by comparing consecutive series of non-robotic assisted (NR-TKA) and robotic-arm assisted (NR-TKA) total knee arthroplasties with the same implant. Methods. 80 NR-TKAs and then 101 RA-TKAs were performed consecutively. 70 knees in each group that had a minimum two-year follow-up were retrospectively reviewed. Range of motion, Knee Society (KS) scores, and forgotten joint scores (FJS) were compared using Mann-Whitney U tests. Tourniquets, used for all cases, had their inflation time recorded. Component realignment to minimize soft tissue releases was used in both groups with the goal to stay within a mechanical alignment of 3° of varus to 2° of valgus. The use of soft tissue releases for balance were compared. Results. There were no statistical differences in baseline characteristics including pre-operative Knee Society scores between cohorts. The two-year NR-TKA and RA-TKA median KS knee and functional scores were 99.0 and 90.0 and 100.0 and 100.0 respectively. Mann-Whitney U test indicated a statistically significant difference in KS-KS (p<.00001) and near statistically significant difference in KS-FS (p=0.075). The 10-point higher KS-FS is considered a minimal clinically important difference. The median FJS at two years for the NR-TKA was 61.5 and the RA-TKA was 75.0. Although not statistically significant (p=0.1556), the 13.5-point increase in the RA-TKA cohort also represents a minimal clinically important difference. RA-TKA patients had statistically significant 5° higher knee flexion (p<.00001). Desired post-operative coronal alignment was present in 92.9% of NR-TKAs and 94.3% of RA-TKAs. 28.6% more of the RA-TKA cases were able to be balanced without a soft tissue release. Median tourniquet time was only 3.9 minutes longer for the robotic-arm assisted cohort. Conclusion. This comparison study demonstrates potential benefits in use of robotic-arm assistance over manual instrumentation in TKA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 87 - 87
1 Jul 2022
Rajput V Fontalis A Plastow R Kayani B Giebaly D Hansejee S Magan A Haddad F
Full Access

Abstract. Introduction. Coronal plane alignment of the knee (CPAK) classification utilises the native arithmetic hip-knee alignment to calculate the constitutional limb alignment and joint line obliquity which is important in pre-operative planning. The objective of this study was to compare the accuracy and reproducibility of measuring the lower limb constitutional alignment with the traditional long leg radiographs versus computed tomography (CT) used for pre-operative planning in robotic-arm assisted TKA. Methods. Digital long leg radiographs and pre-operative CT scan plans of 42 patients (46 knees) with osteoarthritis undergoing robotic-arm assisted total knee replacement were analysed. The constitutional alignment was established by measuring the medial proximal tibial angle (mPTA), lateral distal femoral angle (LDFA), weight bearing hip knee alignment (WBHKA), arithmetic hip knee alignment (aHKA) and joint line obliquity (JLO). Furthermore, the Coronal Plane Alignment of the Knee (CPAK) classification was utilised to classify the patients based on their coronal knee alignment phenotype. Results. Mean age of the patients was 66 years (SD 9) and mean BMI 31.2 (SD 3.9). There were 27 left and 19 right sided surgeries. The Pearson's corelation coefficient was 0.722 (p=0.008) for WBHKA; 0.729 (p<0.001) for MPTA; 0.618 (p=0.14) for aHKA; 0.502 (p= 0.04) for LDFA and 0.305 (p=0.234) for JLO. CPAK classification was concordant for 53% study participants between the two groups. Conclusion. Three-dimensional CT-based modelling with computer software more accurately predicts constitutional limb alignment and JLO as defined by the CPAK classification compared to plain long-leg radiographs in pre-operative planning of total knee arthroplasty


Robotic assisted surgery aims to reduce surgical errors in implant positioning and better restore native hip biomechanics compared to conventional techniques for total hip arthroplasty (THA). The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual THA versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, cup inclination, cup version, and leg-length correction. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. All operative procedures were undertaken by a single surgeon using the minimally-invasive posterior approach. Two independent blinded observers recoded all radiological outcomes of interest using plain radiographs. Patients in both treatment groups were well-matched for age, gender, body mass index, laterality of surgery, and ASA scores. Interclass correlation coefficient was 0.92 (95% CI: 0.84 – 0.95) for intra-observer agreement and 0.88 (95% CI: 0.82–0.94) for inter-observer agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p<0.001) and vertical (p<0.001) centres of rotation, and improved preservation of the patient's native combined offset (P<0.001) compared to conventional THA. Robotic THA improved accuracy in positioning of the acetabular cup within the combined safe zones of inclination and anteversion described by Lewinnek et al (p=0.02) and Callanan et al (p=0.01) compared to conventional THA (figures 1–2). There was no difference between the two treatment groups in achieving the planned leg-length correction (p=0.10). Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular cup positioning within the safe zones of inclination and anteversion compared to conventional manual THA. Robotic-arm assisted THA enables improved preservation of native hip biomechanics compared to conventional manual THA. For any figures or tables, please contact authors directly: . fsh@fareshaddad.net


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 97 - 97
1 Jan 2016
Conditt M Franceschi G Bertolini D Khabbazè C Rovini A Nardaccione R
Full Access

Introduction. Isolated lateral compartment osteoarthritis (OA) occurs in 5–10% of knees with OA [1, 2]. Lateral unicompartmental knee arthroplasty (LUKA) emerged as a treatment to this disease in the early 80s but challenging surgical technique has limited the prevalence of this treatment option [1–3]. A robotic-arm assisted surgical technique (MAKO Surgical Corp.) has emerged as a way to achieve precise implant positioning which can potentially improve surgical outcomes. Objectives. The purpose of this study was to evaluate short term outcomes for patients that received LUKA using a novel robotic-arm assisted surgical technique. Methods. Thirty-seven (37) patients (12 male, 25 female - mean age 63.7 years) with lateral OA received a robotic-arm assisted LUKA between July 2011 and September 2013 from 3 surgeons. All patients were evaluated by an independent surgeon not involved in the treatment of these patients at an average follow-up of 15.9 months (8–27). Range of motion and limb alignment was compared pre- and post-operatively. Results. Lateral UKA using robotic-arm assistance improved the post-operative range of motion an average of 4.8 ± 7.1º (p<0.0001) from a starting value of 136.5 ± 8.6º to a post-operative value of 141.6 ± 8.0º. In addition, patients began with a pre-operative deformity of 3.1 ± 3.2º of valgus and resulted in a post-operative alignment of 0.8 ± 1.9º of valgus corresponding to an average correction of 2.4 ± 2.3º less valgus (p<0.000001). The average operative time was 44.0 ± 10.8 minutes with 97% of the cases completed within 60 minutes. Conclusion. These results suggest that LUKA with robotic-arm assistance provides excellent post-operative alignment and demonstrate a reliable option for management of isolated lateral knee OA