Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods. A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results. Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion. This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A
Background. One of the potential complications of polyethylene liner (PL) is its dissociation from the metal shell. This is a rare but catastrophic complication of total hip replacement (THR). Objective. was to analyze the retrieved dissociated components (PL and shell) (Depuy Pinnacle, Warsaw, IN, USA) to evaluate the mechanism of failure. All these components were dissociated within four years of implantation. Methods. Components were retrieved from three different centers in Canada over the period from January 2011 to October 2016. The analysis was done at the Orthopaedic Innovation Centre (OIC) in Winnipeg Canada. Nine PLs were retrieved at the time of revision THR. Assessment using optical and scanning electron microscopies at magnification between 25× and 150× was performed. The following questions were asked: 1) were the liners correctly seated at the primary surgery? 2) Are there signs of impingement present which could have caused the liner to become dissociated? 3) Does the wear pattern indicate that the liner was failing prior to dissociation?. Results. All PLs dissociated in the inferior direction. Five PL were believed to have been seated properly at the time of indexed surgery. All PL displayed signs of post dissociation impingement. Only 1 PL had fractured resulting in failure prior to dissociation. Other PL showed signs of wear, however none of them reached thinness that would be a cause for concern. Eight PLs demonstrated shearing of the anti rotation tabs. Assessment of the anti rotation tabs revealed that a couple had sheared off suddenly while remaining anti rotation tabs sheared off in progressive fatigue resulting in the failure of the locking mechanism. Conclusions.
Introduction. The use of Additive Manufacturing (AM) to 3D print titanium implants is becoming widespread in orthopaedics, particularly in producing cementless porous acetabular components that are either custom-made or off-the-shelf; the primary design rationale for this is enhanced bony fixation by matching the porosity of bone. Analysis of these retrieved components can help us understand their performance; in this study we introduce a non-destructive method of the
Four low-cost hip prostheses, explanted because of clinical failure within three years, were subjected to a
Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart.
Clinical implantation represents the ultimate experiment of any component and often demonstrates areas of strengths and weaknesses not predicted from in vitro testing. Mobile bearing knees incorporate an additional articulating interface between the flat distal PE insert and a highly polished metal tibial tray. This can allow the proximal interface to retain high conformity whilst leading to reduced stresses at the bone – prosthesis interface by permitting complex distal interface compensatory motion to occur (rotation and/or translation). Retrieval reports on many of the new generation of mobile bearing implants remains scarce. This study presented a
Good short-term results with Mt Blanc uncemented acetabular cups have been previously reported. However, in the medium term, we have observed acetabular loosening related to large granulomatous lytic lesions. To determine the cause of the polyethylene load causing the granulomatous lytic lesions, we subjected six explanted Mt Blanc acetabular cups to
Dual Mobility (DM) Total Hip Replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. The in-vivo mechanics of these implants is not well understood, despite their increased use in both elective and trauma settings. Therefore, the aim of this study was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment techniques. Retrieved DM liners (n=20) were visually inspected for the presence of seven established modes of polyethylene damage. If embedded debris was identified on the external surface, its material composition was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation using a validated methodology. Visual inspection of the liners revealed that scratching and pitting were the most common damage modes on either surface. Burnishing was observed on 50% and 15% of the internal and external surfaces, respectively. In addition, embedded debris was identified on 25% of the internal and 65% of the external surfaces. EDX analysis of the debris identified several materials including iron, titanium, cobalt-chrome, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners. The results of this study provide insight into the in-vivo mechanics of DM bearings. For example, the results suggest that the internal bearing (i.e., between the head and liner) acts as the primary articulation site for DM-THRs as evidenced by a higher incidence of burnishing and larger, more concentrated regions of penetration across the liners’ internal surfaces. Furthermore, circumferential, and crescent-shaped damage patterns were identified on the articulating surfaces of the liners thus providing evidence that these components can rotate within the acetabular shell with varying degrees of mobility. The mechanics of DM bearings are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted. Finally, the results of this study suggest that DM liners may be susceptible to ex-vivo surface damage and thus caution is advised when handling and/or assessing these types of components.
Dual mobility (DM) total hip replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. Although DM THRs have shown good overall survivorship and low dislocation rates, the mechanisms which describe how these bearings function in-vivo are not fully understood. Therefore, the study aim was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment methods. Retrieved DM liners (n=18) were visually inspected for the presence of surface damage, whereby the internal and external surfaces were independently assigned a score of one (present) or zero (not present) for seven damage modes. The severity of damage was not assessed. The material composition of embedded debris was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation [1]. Scratching and pitting were the most common damage modes on either surface. Additionally, burnishing was observed on 50% of the internal surfaces and embedded debris was identified on 67% of the external surfaces. EDX analysis of the debris identified several materials including titanium, cobalt-chrome, iron, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners. The incidence of burnishing was three times greater for the internal surfaces, suggesting that this acts as the primary articulation site. The external surfaces sustained more observable damage as evidenced by a higher incidence of embedded debris, abrasion, delamination, and deformation. In conjunction with the highly variable damage patterns observed, these results suggest that DM kinematics are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted.
3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved. We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision. Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth. The additively manufactured cups were revised after a median (IQR) time of 24.9 months (20.5 to 45.6) from patients with a median (IQR) age of 61.1 years (48.4 to 71.9), while the conventional cups had a median (IQR) time to revision of 46.3 months (34.7 to 49.1, p = 0.366) and had been retrieved from patients with a median age of 66.0 years (56.9 to 68.9, p = 0.999). The additively and conventionally manufactured implants had a median (IQR) bone area fraction of 65.7% (36.4 to 90.6) and 33.9% (21.9 to 50.0), respectively (p < 0.001). A significantly greater amount of bone ingrowth was measured into the backside of the additively manufactured acetabular cups, compared to their conventional counterparts (p < 0.001). Bone occupied a median of 60.0% and 5.7% of the porous depth in the additively manufactured and conventional cups, respectively. 3D printed components were found to achieve a greater amount of bone ingrowth than their conventionally manufactured counterparts, suggesting that the complex porous structures generated through this manufacturing technique may encourage greater osteointegration.
Background. Skeletal stem cells can be combined with human allograft, and impacted to produce a mechanically stable living bone composite. This strategy has been used for the treatment of femoral head avascular necrosis, and has been translated to four patients, of which three remain asymptomatic at up to three year follow-up. In one patient collapse occurred in both hips due to widely distributed and advanced AVN disease, necessitating bilateral hip arthroplasty. However this has provided the opportunity to retrieve the femoral heads and analyse human tissue engineered bone. Aims. Analysis of retrieved human tissue-engineered bone in conjunction with clinical follow-up of this translational case series. Methods. A parallel in vitro culture of the implanted cell-graft constructs was set up at the time of surgery, with serial cell viability stains performed up to six weeks. Patient follow-up was by serial clinical and radiological examination. Tissue engineered bone from the two retrieved femoral heads was analysed histologically by Alcian blue & Sirius red stain and bi-refringence, by micro computed tomography (microCT) for both bone density and morphology, and by compression testing for mechanical strength. Normal trabecular and cortical bone from the femoral heads was used as controls. Results. Parallel in vitro analysis demonstrated sustained cell growth and viability on the allograft. Histologically, the retrieved tissue engineered specimens demonstrated a mature trabecular micro-architecture and organization identical to normal trabecular bone. MicroCT revealed trabecular morphology within the tissue-engineered bone, with bone density of 1400 Grey scale units (compared to 1200 for natural trabecular bone and 1800 for cortical bone). Axial compression testing showed no difference in strength between engineered and trabecular bone. Conclusions. Widespread residual necrosis in the femoral heads of one patient resulted in collapse requiring hip arthroplasty, but analysis of the tissue engineered bone sections has demonstrated the translational potential of a living bone composite to restore both the biological and mechanical characteristics of bone defects. Clinical follow-up shows this to be an effective new treatment for focal early stage avascular necrosis of the femoral head, and this unique
Introduction. Thermally treated 1st generation highly crosslinked polyethylenes (HXLPE) have demonstrated reduced penetration and osteolysis rates, however, concerns still remain with respect to oxidative stability and mechanical properties of these materials. To address these concerns, manufacturers have introduced the use of antioxidants to quench free radicals while maintaining the mechanical properties of the HXLPE. Two common antioxidants are α-tocopherol (Vitamin-E) and pentaerythritol tetrakis (PBHP). These may be either mixed prior to consolidation, or diffused throughout the polymer after consolidation and irradiation. In vitrostudies have shown that these materials are oxidatively stable and have improved mechanical properties compared to 1st generation HXLPEs; however, few studies have investigated the in vivo performance of anti-oxidant stabilized HXLPE. The purpose of this study was to investigate the revision reasons, oxidation, and mechanical properties of retrieved short-term anti-oxidant HXLPE. Methods. Between 2010 and 2015, 73 anti-oxidant HXLPE components were collected as a part of an IRB approved, multi-institutional
Background:. Polyethylene wear in total knee arthroplasty (TKA) is influenced by patient, surgeon and implant factors. The objective of this study is to assess the effect of limb alignment, implant position and joint line position on the pattern of wear in posterior stabilized (PS) tibial inserts. Methods:. This was a
This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological, metal ion and
This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological outcome, metal ion levels and
Introduction. Antibiotic loaded polymethyle methacrylate spacers are commonly used in the management of septic hip replacements. Aim. The aim of this study was to determine wear patterns on the articulating surfaces of these spacers, as well as to determine the extent of PMMA particulate debris generation. Method. We took tissue specimens around the acetabulae in 12 cases at the time of the second stage procedure for septic total hip revisions. These were subjected to histological analysis to determine the extent of PMMA particulate debris contamination. We also performed a basic explant
We explanted NeuFlex metacarpophalangeal (MP) joint prostheses to identify common features, such as position of fracture, and thus better understand the reasons for implant failure. Explanted NeuFlex MP joint prostheses were retrieved as part of an-ongoing implant retrieval programme. Following revision MP joint surgery the implants were cleaned and sent for assessment. Ethical advice was sought but not required. The explants were photographed. The position of fracture, if any, was noted. Patient demographics were recorded.Objective
Methods
In total hip arthroplasty (THA), one of concerned issues is osteolysis due to wear debris of ultra-high molecular weight polyethylene (PE) which often leads to aseptic loosening. Reduction of PE wear debris is essential to prevent osteolysis, and different bearing combination as well as improvement of the bearing material itself have been attempted. Hence alumina ceramics was introduced for THA, aiming to reduce PE wear debris. Ceramic on PE couple showed good results in clinical wear compared with metal on PE couples. Highly cross-linked PE (HXLPE) with gamma-ray or electron-beam irradiation followed by thermal treatment has also demonstrated a remarkably low wear in the previous in vitro studies. In in vivo studies, the wear of HXLPE acetabular cups against alumina ceramic femoral head was evaluated to compare with that of conventional PE cups against alumina ceramic femoral head. The in vivo wear of 61 HXLPE cups (Aeonian; Kyocera Corp., Kyoto, Japan, currently Japan Medical Materials Corp., Osaka, Japan) against alumina ceramic femoral head of 28 mm in diameter with clinical use for 2.1–7.1 years (mean 5.6 years) and eight conventional PE cups against an alumina ceramic femoral head of 28 mm in diameter used for 18.7–23.3 years (mean 20.4 years) were examined by radiographic analysis with Vector Works 10.5. The in vivo wear of eight retrieved HXLPE cups with clinical use for 0.9–6.7 years (mean 2.9 years) and 14 retrieved conventional PE cups used for 16.0–28.0 years (mean 22.0 years) were examined by using a three-dimensional coordinate measuring machine. The worn surfaces of retrieved HXLPE and conventional PE cups were observed by a scanning electron microscope. In the radiographic study, penetration rate of alumina head into HXLPE and conventional PE for the first 1 year were 0.24 mm/year and 0.34 mm/year respectively. One year later, the HXLPE showed significant lower penetration rate of 0.001 mm/year than the conventional PE penetration rate of 0.12 mm/year (p<
0.01). By the
The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower limb lengthening. To assess macroscopic and microscopic changes to the implants and assess differences following design modification, with identification of potential surgical, implant and patient risk factors. 15 nails were retrieved from 13 patients following lower limb lengthening. Macroscopic and microscopic surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analysed with Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy to identify corrosion.Introduction
Method