Advertisement for orthosearch.org.uk
Results 1 - 20 of 135
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 179 - 179
1 Sep 2012
Spangehl MJ Clarke HD
Full Access

Introduction. Opponents of patellar resurfacing during Total Knee Arthroplasty (TKA) note unique complications associated with resurfacing. Problems include over-stuffing (the creation of a composite patellar-prosthesis thickness greater than the native patella) that may contribute to reduced range of motion; and creation of a patellar remnant that is too thin (in order to avoid over-stuffing) that may contribute to post-operative fracture. Factors including surgical technique, prosthesis design and patient anatomy may contribute to these problems. This study was performed to define the native patellar anatomy, and to compare the effect of differences in component thickness between manufacturers. Methods. This retrospective, IRB approved study reviewed 803 knees that underwent primary TKA between 2005 and 2011 with a single surgeon. Patellar resurfacing was performed with a round, polyethylene component from one of two different implant designs using the same surgical technique. Data recorded for each patient included: gender; patellar thickness before and after resurfacing; the dimensions and manufacturer of the prosthesis. The residual patellar bone thickness after resection was calculated. Results. Mean (SD) native patellar thickness was 25.24mm (2.11) in males, versus 22.13mm (1.89) in females (P = <0.001). 47/313 (15%) of males had increases in the composite patellar thickness after resurfacing, versus 120/480 (25%) of females (P < 0.001). 123/480 (26%) of females had a residual patella thickness <= 13mm, versus 12/313 (4%) of males (P <0.001). Finally, 79/265 (30%) of patients with a patellar prosthesis from manufacturer B had increases in the composite thickness, versus 88/522 (17%) of patients with manufacturer A (P < 0.001). Conclusions. Both patient gender (due to smaller native patellae in females) and prosthesis design (thicker components from manufacturer B) are risk factors for over-stuffing of the patella or over-resection of the patella. These findings suggest that patellar component design can be improved for female patients


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 40 - 40
1 Mar 2013
Clarke H Spangehl MJ
Full Access

Introduction. Patellar resurfacing during Total Knee Arthroplasty (TKA) is controversial. Problems unique to patellar resurfacing may be influenced by available patellar component design. These issues include; over-stuffing (the creation of a composite patellar-prosthesis thickness greater than the native patella) that may contribute to reduced range of motion; and over-resection of the native patellar bone that may contribute to post-operative fracture. Prosthesis design may play a role in contributing to these problems. Component diameter and thickness are quite variable from one manufacturer to another and little information has been previously published about optimal component dimensions. This anatomic study was performed to define the native patellar anatomy of patients undergoing TKA, in order to guide future component design. Methods. This retrospective, IRB approved study reviewed 797 Caucasian knees that underwent primary TKA by a single surgeon. Data recorded for each patient included: gender; patellar thickness before and after resurfacing, and the size of the component that provided the greatest patellar coverage without any overhang. The residual patellar bone thickness after resection was also calculated. Results. Mean (SD) native patellar thickness was 25.24 mm (2.11) in males, versus 22.13 mm (1.89) in females (P = <0.001). 84 of 483 females (17 %) had a native patellar thickness less than or equal to 20 mm. Only 3 male patients had a native patellar thickness less than or equal to 20 mm (1%). 374 females (78%) could only accommodate a round patellar button less than or equal to 32 mm. Conclusions. These findings suggest that patellar component design can be improved for Caucasian female patients. Round components between 26 and 32 mm that measure no more than 7 mm thick would be required to avoid systematic over-stuffing or over-resection of the native patellar in female patients. Most contemporary knee systems do not meet these needs


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 267 - 267
1 Jul 2008
MIGAUD H PINOIT Y HERENT S SOENEN M BACHOUR F MAY O LAFFARGUE P DUHAMEL A DEVOS P
Full Access

Purpose of the study: In order to evaluate the influence of prosthesis design and resurfacing on the outcome of total hip arthroplasty (THA) implanted without cement, we reviewed the orthopedic literature from 1980 to 2004. Material and methods: The PubMed database was screened from 1980 to 2004 for publications reporting cementless THA with a follow-up analysis. The same criteria were used to screen three registries. In all, the publications retained had studied 50,162 cementless THA (mean patient age 48.9 years, mean follow-up 6.5 years) where were studied according to rate of revision, presence of osteolysis, and presence of operative fractures. Eleven families of components grouped together the majority of prostheses: five acetabular families [screw fixation without resurfacing (n=2997), screw fixation with hydroxyapatite (HA) resurfacing (n=3618), screw fixation with corindon resurfacing (2360), press-fit mac-roporous (15691), press-fit HA (6094)]; and six families of femoral pivots [straight macroprous (n=7502), straight HA (n=3255), straight corindon (n=6136), anatomic HA (n=3468), anatomic macroporous (n=1215), anatomic corindon (n=1041)]. Results: The rates of revision and of osteolysis were higher for screw fixed cups without resurfacing. For screw fixed or press-fit cups, HA resurfacing did not reduce the rate of revision compared with corindon coated or macroporous implants. For anatomic pivots, adjunction of HA resurfacing reduced the rate of revision but at the shortest follow-up and without reducing the rate of osteolysis. Corindon-coated pivots gave comparable results for straight or anatomic implants. Conversely, HA-coated pivots gave better results with an anatomic design. The shape of the pivot had les effect than resurfacing on osteolysis and revision, but had a greater influence on operative fractures (2.9% for straight implants versus 4.6% for anatomic versions). Conclusion: In all:. uncoated implants should be abandoned;. HA resurfacing does not reduce the rate of revision and can be associated with a higher rage of osteolysis;. there is no advantage between screw fixed or press-fit cups as long as the cup has a quality resurfacing;. there is no real difference between straight and anatomic pivots except that intraoperative fracture can be lower for the straight implants


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 83 - 83
1 May 2016
Christiansen J Nielsen P Laursen M Blunn G
Full Access

Introduction

The Primoris® femoral stem was designed to preserve bone and maintain normal stress to the proximal femur, thereby minimizing stress-shielding. The implant is anchored in the femoral neck and metaphysis without diaphysial involvement and differs from other neck prothesis by: a) Elliptical shape to fit the inner neck dimensions. b) On top of Ti– porous-coating electrochemically deposited hydroxy apatite (Bonemaster®) c) The surgical technique aims to enhance initial implant stability by compaction of neck and metaphyseal cancellous bone.

Objectives

As part of stepwise introduction to monitor bone remodeling, RSA data and clinical results.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 305 - 305
1 Jul 2008
Budithi S Mereddy P Logishetty R Nargol A
Full Access

Introduction: Design of the prosthesis is an important factor in the successful outcome and longevity of total hip replacement. The purpose of the present study is to evaluate the minimum six-year results of primary total hip replacement using LX cemented prosthesis.

Methods: We prospectively studied 177 patients (60 male and 117 female) who underwent 197 hip replacements, between 1996 and 1999, using LX cemented prosthesis comprising a femoral component with cylindrical cross section of the stem and an acetabular component of ultrahigh molecular weight polyethylene. The average follow up was 7.3 years (6.1–9.6years). Clinical (Harris Hip Score) and radiological assessments (Barrack’s grading of cementation, subsidence, debonding, radiolucent lines and osteolysis) were performed.

Results: The average Harris Hip Score is 85.53 (28–99) compared to the preoperative score of 59.28. 28 cases (14.2%) developed progressive radiolucent lines around the stem. Sinking and debonding of the stem was noted in 18 cases (9.1%). 15 hips (7.6%) have dislocated and 11 were recurrent dislocations. Revision hip replacement was carried out in 12 cases (6%) for subsidence and debonding of stem, cement fracture and recurrent dislocation. The femoral stem components were found to be loose at the time of surgery.

Discussion: We believe that design of the prosthesis is an important factor in the high incidence of subsidence and debonding of the femoral stem. Both the geometry (cylindrical shape) and the rough surface finish (Ra value 100 microinches) were responsible for the pattern of progressive loosening. Lack of progressive increase in the offset with increase in the size of femoral component from 1 to 2 is one of the factors which contributed to high incidence of dislocation.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 90 - 101
1 Jan 2020
Davis ET Pagkalos J Kopjar B

Aims

The aim of this study was to identify the effect of the manufacturing characteristics of polyethylene acetabular liners on the survival of cementless and hybrid total hip arthroplasty (THA).

Methods

Prospective cohort study using linked National Joint Registry (NJR) and manufacturer data. The primary endpoint was revision for aseptic loosening. Cox proportional hazard regression was the primary analytical approach. Manufacturing variables included resin type, crosslinking radiation dose, terminal sterilization method, terminal sterilization radiation dose, stabilization treatment, total radiation dose, packaging, and face asymmetry. Total radiation dose was further divided into G1 (no radiation), G2 (> 0 Mrad to < 5 Mrad), G3 (≥ 5 Mrad to < 10 Mrad), and G4 (≥ 10 Mrad).


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 3 - 3
1 Dec 2022
Leardini A Caravaggi P Ortolani M Durante S Belvedere C
Full Access

Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from medical image, goes through anatomical modelling, prosthesis design, prototyping, and final production in 3D printers and in case post-production. These devices have demonstrated already to be accurate enough to address properly the specific needs and conditions of the patient and of his/her physician. These guarantee also minimum removal of the tissues, partial replacements, no size related issues, minimal invasiveness, limited instrumentation. The thorough preparation of the treatment results also in a considerable shortening of the surgical and of recovery time. The necessary additional efforts and costs of custom-made implants seem to be well balanced by these advantages and savings, which shall include the lower failures and revision surgery rates. This also allows thoughtful optimization of the component-to-bone interfaces, by advanced lattice structures, with topologies mimicking the trabecular bone, possibly to promote osteointegration and to prevent infection. IOR's experience comprises all sub-disciplines and anatomical areas, here mentioned in historical order. Originally, several systems of Patient-Specific instrumentation have been exploited in total knee and total ankle replacements. A few massive osteoarticular reconstructions in the shank and foot for severe bone fractures were performed, starting from mirroring the contralateral area. Something very similar was performed also for pelvic surgery in the Oncology department, where massive skeletal reconstructions for bone tumours are necessary. To this aim, in addition to the standard anatomical modelling, prosthesis design, technical/technological refinements, and manufacturing, surgical guides for the correct execution of the osteotomies are also designed and 3D printed. Another original experience is about en-block replacement of vertebral bodies for severe bone loss, in particular for tumours. In this project, technological and biological aspects have also been addressed, to enhance osteointegration and to diminish the risk of infection. In our series there is also a case of successful custom reconstruction of the anterior chest wall. Initial experiences are in progress also for shoulder and elbow surgery, in particular for pre-op planning and surgical guide design in complex re-alignment osteotomies for severe bone deformities. Also in complex flat-foot deformities, in preparation of surgical corrections, 3D digital reconstruction and 3D printing in cheap ABS filaments have been valuable, for indication, planning of surgery and patient communication; with special materials mimicking bone strength, these 3D physical models are precious also for training and preparation of the surgery. In Paediatric surgery severe multi planar & multifocal deformities in children are addressed with personalized pre-op planning and custom cutting-guides for the necessary osteotomies, most of which require custom allografts. A number of complex hip revision surgeries have been performed, where 3D reconstruction for possible final solutions with exact implants on the remaining bone were developed. Elective surgery has been addressed as well, in particular the customization of an original total ankle replacement designed at IOR. Also a novel system with a high-tibial-osteotomy, including a custom cutting jig and the fixation plate was tested. An initial experience for the design and test of custom ankle & foot orthotics is also in progress, starting with 3D surface scanning of the shank and foot including the plantar aspect. Clearly, for achieving these results, multi-disciplinary teams have been formed, including physicians, radiologists, bioengineers and technologists, working together for the same goal


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 10 - 10
1 Jun 2021
Van Tienen T Defoort K van de Groes S Emans P Heesterbeek P Pikaart R
Full Access

Introduction. Post-meniscectomy syndrome is broadly characterised by intractable pain following the partial or total removal of a meniscus. There is a large treatment gap between the first knee pain after meniscectomy and the eligibility for a TKA. Hence, there is a strong unmet need for a solution that will relieve this post-meniscectomy pain. Goal of this first-in-man study was to evaluate the safety and performance of an anatomically shaped artificial medial meniscus prosthesis and the accompanying surgical technique. Methods. A first-in-man, prospective, multi-centre, single arm clinical investigation was intended to be performed on 18 post-medial meniscectomy syndrome patients with limited underlying cartilage damage (Kellgren Lawrence scale 0–3) in the medial compartment and having a normal lateral compartment. Eventually 5 patients received a polycarbonate urethane mediale meniscus prosthesis (Trammpolin® medial meniscus prosthesis; ATRO Medical B.V., the Netherlands) which was clicked onto two titanium screws fixated at the native horn attachments on the tibia. PROMs were collected at baseline and at 6 weeks, 3, 6, 12 and 24 months following the intervention including X-rays at 6, 12 and 24 Months. MRI scans were repeated after 12 and 24 months. Results. The surgical technique to select the appropriately sized implant and correct positioning of the fixation screws and meniscus prosthesis onto the tibia was demonstrated feasible and reproducible. The surgeries showed that in particular the positioning of the posterior screw is crucial for correct positioning of the prosthesis. Inclusion stopped after 5 patients, who reached the 6 months evaluation. The PROMs did not improve in the first 6 months after surgery. All patients reported knee joint stiffness and slight effusion in their knee at 6 months follow-up. In case of symptomatic patients an evaluation of the device position and integrity was performed by MRI. In three patients the implants were removed because of implant failure and in one patient the implant was removed because of persistent pain and extension deficit. At present one patient has the implant still in situ. The explantations of the implants demonstrated no articular cartilage damage and the fixation screws were securely anchored. Discussion. This is the first clinical study with an artificial meniscus-like prosthesis. Except one, all implants were removed due to implant breakage or discomfort of the patient. Analysis of the torn implants showed fatigue failure resulting from the lack of loadsharing between implant and cartilage: the implant was too stiff and carried all the load in the medial compartment of the knee. Furthermore, the fixation with screws seemed too rigid which restricted the motion of the posterior horn. Based on previous in vitro and animal experiments, we expected more creep of the material and more motion on the screw fixation. Conclusion. This first-in-man clinical study demonstrates that the investigated device design is not safe and did not perform as expected. Therefore, modification of the meniscus prosthesis design and fixation technique is required to allow for more motion of the meniscus prosthesis during knee joint movement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 56 - 56
1 Feb 2020
Broberg J Howard J Lanting B Vasarhelyi E Yuan X Naudie D Teeter M
Full Access

Introduction. Surgeons performing a total knee replacement (TKR) have two available techniques available to help them achieve the proper bone resections and ligament tension – gap balancing (GB) and measured resection (MR). GB relies on balancing ligaments prior to bony resections whereas bony resections are made based on anatomical landmarks in MR. Many studies have been done to compare the joint kinematics between the two techniques, however the results have been varied. These studies were not done with anatomically designed prostheses. The Journey II (Smith & Nephew, Memphis, TN) is one such design which attempts to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Given the design differences between anatomical and non-anatomical prostheses, it is important to investigate whether one technique provides superior kinematics when an anatomical design is used. We hypothesize that there will be no difference between the two techniques. Methods. A total of 56 individuals were recruited to receive a Journey II prosthesis and randomized evenly to groups where the GB technique or MR technique is used. For all patients in the study, a series of radiostereometric analysis (RSA) images were acquired at 3-months post-operatively at different knee flexion angles, ranging in 20° increments from 0° to 120°. Model-based RSA software (RSACore, Leiden, Netherlands) was used to obtain the 3D positions and orientations of the femoral and tibial implant components, which were in turn used to obtain kinematic measures (contact locations and magnitude of excursion) for each condyle. Results. Preliminary results for the anterior-posterior (AP) contact locations from 33 patients (18 GB, 15 MR) are displayed in Figure 1. There were no significant differences in medial and lateral contact locations between the GB and MR groups for all angles of flexion. However, the pattern of medial contact for the MR technique displays more paradoxical anterior motion at mid-flexion (40°–60°) than the GB group. There were no significant differences in magnitude of excursion between groups on both medial (mean difference=1.96 mm, p=0.16) and lateral (mean difference=0.21 mm, p=0.79) condyles, indicating that posterior femoral rollback is similar between groups. Conclusions. Early results suggest that the MR technique is associated with slightly more abnormal kinematics than the GB technique when an anatomical prosthesis design is used for TKR. The GB technique may be more appropriate than MR technique for implanting anatomically designed knee replacements. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 7, Issue 8 | Pages 524 - 538
1 Aug 2018
Zhao S Arnold M Ma S Abel RL Cobb JP Hansen U Boughton O

Objectives. The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods. A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results. A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion. Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 134 - 134
1 May 2016
Plachel F Heuberer P Schanda J Pauzenberger L Anderl W
Full Access

Background. The use of reverse total shoulder arthroplasty considerably increased since first introduced by Paul Grammont in the late 1980s. Over the past few years, results from several mid- and long-term clinical studies have demonstrated good functional outcomes and pain relief. However, several complications, especially inferior glenoid notching, and high revision rates were reported in the literature. Improvements in prosthesis design should contribute to a lower complication rate and lesser amount of glenoid erosion. Few studies have reported the clinical outcome andcomplications of Anatomical Shoulder Inverse/ Reverse Prosthesis. This study documents 2- and 6-year clinical and radiological results following reversed shoulder arthroplasty using this novel prosthesis. Methods. We report the results for sixty-eight consecutive patients (seventy shoulders) with cuff tear arthropathy (CTA) treated with Anatomical Shoulder Inverse/Reverse Prosthesis between 2006 and 2008. Two groups were defined: (A) primary treatment and (B) revision. Clinical evaluation tools comprised Constant-Murley score (CS), range of motion, and a visual analog scale to assess pain. Radiographs (anteroposterior view in neutral position) were evaluated for notching and radiolucent lines. Any complications were recorded. Results. In total, 66 shoulders (94%) with a mean follow-up of 30.0 months were initially analysed. CS increased from preoperatively 20.2 to postoperatively 53.6 points. Inferior scapular notching was identified in 58% of patients, primarily grade 1 and 2 (low-graded). 16% of patients experienced a complication, including instability, infection or periprosthetic fracture. 58 patients (83%) were re-evaluated 69.0 months after implantation. CS decreased to 50.2 points (n.s.). 16 patients (23%) had postoperative complication at final follow-up. We observed progressive radiographic changes in 75% and an increased frequency of large notches (grade 3 and 4). No significant difference regarding clinical outcome was detected between group A and B after both 2 and 6 years. Conclusion. Total shoulder arthroplasty with the Anatomical Shoulder Inverse/Reverse Prosthesis is a reliable treatment option in patients with cuff tear arthropathy. Primary and revision arthropathies result in similar improvements in range of motion and pain. Constant-Murley score and radiographic changes deteriorated with time. Inferior scapular notching appeared rapidly after implantation. A change of prosthesis design and prosthetic overhang intraoperatively seems to be the most effective way to prevent scapular conflict. The complication rate in our series is equally to previously reported rates


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2020
Fattori A Negro ND Gunsallus K Lipman J Hotchkiss R Figgie M Wright T Pressacco M
Full Access

Introduction. Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading. Methods. A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function). Results. All 5 samples withstood all 5.2M loading cycles without any mechanical failure. At the end of 5M cycles, each axle was still stable as the measured disassembly torque was 3.96 +/−0.18 Nm. Slight signs of fretting were detected on the tapered connection after 5M cycles, however they did not compromise the mechanical connection nor the stability. Discussion and Conclusions. Currently there are no reference standards that properly define protocols for biomechanical testing of elbow prostheses. In the present study, a test to mechanically assess the strength of an axle connection under both typical ADLs and HD loads was set. The connection was able to withstand the imposed conditions. In general, testing of TEA devices should include not only standard ADLs loads but also HD loads, which could be more detrimental for the long-term survivorship. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 101 - 101
1 Nov 2018
George A Ellis M Gill R
Full Access

It is well documented that implant loosening rate in sickle cell disease patients is higher than that seen in patients with hip arthroplasty from other indications. The Hypoxic inducible factor(HIF) - is activated in the microcellular hypoxic environment and this through a cascade of other enzymatic reactions promotes the activity of other factors and further help enhance angiogenesis and osteogenesis. The aim of this study was to investigate and propose a potential model for investigating osseointegration in a hypoxic microcellular environment using osteoblasts(MG63). Human MG63 osteoblastic cells were cultured under normoxia and hypoxic conditions (20%; and 1% oxygen saturation) for 72 hours under two different condition- with and without cobalt chloride. The samples cultured under normoxic condtions without cobalt chloride acted as control. Using qualitative polymerase chain reaction-(qPCR) - HIF expression was assessed under the above conditions in relation to the control. The results showed there was significant expression of the HIF 1 alpha protein under hypoxic condition with cobalt chloride in comparison with the control samples- all at 72hours incubation. Mann-Whitney U test was used to deduce level of significance of fold change.(p=0.002; <0.05). This was deemed as being a significant difference in the level of expression of HIF compared to the control. The results show that the hypoxic inducible factor can be expressed using the above tested. experimental invitro-model with significant results which can be a foundation for further research into improving hip implant prosthesis design to help enhance osseo-integration in sickle cell disease patient with AVN


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 14 - 14
1 Aug 2013
Drury C Elias-Jones C Tait G
Full Access

Arthritis of the glenohumeral joint accompanied by an irreparable tear of the rotator cuff can cause severe pain, disability and loss of function, particularly in the elderly population. Anatomical shoulder arthroplasty requires a functioning rotator cuff, however, reverse shoulder arthroplasty is capable of addressing both rotator cuff disorders and glenohumeral deficiencies. The Aequalis Reversed Shoulder Prosthesis design is based on two bio-mechanical principles by Grammont; a medialized center of rotation located inside the glenoid bone surface and second, a 155 degree angle of inclination. Combined, they increase the deltoid lever arm by distalizing the humerus and make the prosthesis inherently stable. 24 consecutive primary reverse total shoulder arthroplasties were performed by a single surgeon for arthritis with rotator cuff compromise and 1 as a revision for a failed primary total shoulder replacement between December 2009 and October 2012. Patients were assessed postoperatively with the use of the DASH score, Oxford shoulder score, range of shoulder motion and plain radiography with Sirveaux score for scapular notching. Mean age at the time of surgery was 72.5 years (range 59 to 86). Average follow up time was 19.4 months (range 4 to 38). Functional outcome scores from our series were comparable with patients from other follow up studies of similar prosthesis design. All patients showed improvement in range of shoulder movement postoperatively. Complications included one dislocation, one acromion fracture and one humeral shaft fracture. No cases of deep infection were recorded. Overall, the short-term clinical results were promising for this series of patients and indicate reverse shoulder arthroplasty as an appropriate treatment for this group of patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 90 - 90
1 May 2019
Lee G
Full Access

Total hip arthroplasty (THA) is effective, reproducible, and durable in the treatment of hip joint arthritis. While improvements in polyethylene materials have significantly reduced wear rates and osteolysis, aseptic loosening of implants remains one of the leading causes of revision THA. Additionally, fears of dislocation and instability have driven the increase in the utilization of larger diameter femoral heads in primary THA which can lead to increased wear when coupled with a polyethylene articulation. Finally, the increasing number of younger and active patients undergoing THA raises questions with regards to the ability of modern conventional bearings to provide durability and longevity beyond second and third decades following joint implantation. Ceramic-on-ceramic articulations are ideally suited for today's young and high demand patients undergoing primary THA. It has the lowest in-vitro wear properties of any bearing couple and the wear characteristics are further improved by its wettability and lubrication particularly when larger heads are utilised. Additionally, improvements in material properties and prosthesis design have significantly decreased fracture rates and increased the reliability of these implants. Furthermore, reported outcomes and longevity of modern ceramic-on-ceramic THAs in younger patients have all shown excellent survivorship despite patients achieving and maintaining a very high level of activity and function. In short, it is the bearing couple most in tune with current market demands and utilization trends. While registry data and meta-analyses of published literature have failed to show the superiority of ceramic-on-ceramic articulations compared to conventional bearings at 10 years, there is evidence that even highly crosslinked polyethylene (HXPE) is not immune to wear. Selvarajah et al. reported steady, in-vivo wear rates of HXPE exceeding 0.1mm/year threshold in young THA patients with 36mm ceramic ball heads. Additionally, small osteolytic lesions have been observed in hips with HXPE bearings at 12–14 years follow up. Finally, analysis of all controlled randomised studies have shown less osteolysis of ceramic-on-ceramic hips compared to polyethylene articulations. The significance of these lesions are unclear but the question remains: Can HXPE as a bearing be able to provide over 30 years of service needed to outlast patients younger than 60 years?. Concerns with cost, squeaking, and fractures do not make ceramic-on-ceramic bearings suitable for all patients undergoing primary THA. However, in young, healthy and active patients, a modern ceramic- on-ceramic articulation is most likely to provide the lowest wear rates, lowest risk of osteolysis, and greatest chance for life-long durability


Bone & Joint Open
Vol. 4, Issue 7 | Pages 490 - 495
4 Jul 2023
Robinson PG Creighton AP Cheng J Dines JS Su EP Gulotta LV Padgett D Demetracopoulos C Hawkes R Prather H Press JM Clement ND

Aims

The primary aim of this prospective, multicentre study is to describe the rates of returning to golf following hip, knee, ankle, and shoulder arthroplasty in an active golfing population. Secondary aims will include determining the timing of return to golf, changes in ability, handicap, and mobility, and assessing joint-specific and health-related outcomes following surgery.

Methods

This is a multicentre, prospective, longitudinal study between the Hospital for Special Surgery, (New York City, New York, USA) and Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, (Edinburgh, UK). Both centres are high-volume arthroplasty centres, specializing in upper and lower limb arthroplasty. Patients undergoing hip, knee, ankle, or shoulder arthroplasty at either centre, and who report being golfers prior to arthroplasty, will be included. Patient-reported outcome measures will be obtained at six weeks, three months, six months, and 12 months. A two-year period of recruitment will be undertaken of arthroplasty patients at both sites.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 149 - 156
4 Apr 2024
Rajamäki A Lehtovirta L Niemeläinen M Reito A Parkkinen J Peräniemi S Vepsäläinen J Eskelinen A

Aims

Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium.

Methods

Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia.


Purpose of the study: Certain patients with a total knee arthroplasty (TKA) require large range of flexion postoperatively to enable squatting and sitting cross-legged. Several factors have an effect on this flexion, including prosthesis design. The purpose of this study was to examine the influence of prosthesis design on intra- and postoperative flexion of three modes of TKA with a pure rotational mobile plateau: two NexGen posterostabilised (PS) prostheses (LPS-Standard and LPS-Flex) and one ultracongruent prosthesis (SAL). It was hypothesised that PS prostheses would have a better flexion than the ultracongruent prosthesis and that the flexion would be greater with the LPS-Flex than the LPS-standard. Material and methods: This was a prospective randomised study of consecutive patients from January 2006 to January 2007 to compare maximal flexion for each model. All patients requiring a first-intention TKA were included in this study. Seventy-tow TKA were studied: LPS-standard (n=24), LPS-Flex (n=22), SAL (n=26). Flexion was measured pre and postoperatively goniometrically. Intraoperative measures were made with the navigation system (Navitrack-Orthosoft). Minimum follow-up was one year. Results: There was a significant difference in flexion, intraoperatively and at last follow-up, in favour of the PS models over the ultracongruent SAL. Conversely, there was no significant difference between the LPS-standard and the LPS-Flex. The analysis of factors predictive of flexion were the SAL model with a negative influence (loss of 8° intraoperatively [p< 10-4] and 15° at one year [p< 10-4] compared with the LPS models). Preoperative flexion appeared to be a positive predictive factor (p=0.00023). Discussion: The design of the TKA has an influence on knee flexion: from implantation, flexion of the PS models was superior to the ultracongruent model, a difference which persisted late after the operation. For the PS models, the LPS-Flex model presented as a large flexion model did not, in our study, demonstrate its superiority over the LPS-standard model, irrespective of the time of the comparison. It should be noted that for implantation the LPS-Flex model required a posterior cut 2mm more than for the LPS-standard. Good preoperative flexion is an essential factor for obtaining good postoperative flexion, irrespective of the model implanted


Bone & Joint Open
Vol. 5, Issue 10 | Pages 911 - 919
21 Oct 2024
Clement N MacDonald DJ Hamilton DF Gaston P

Aims

The aims were to assess whether joint-specific outcome after total knee arthroplasty (TKA) was influenced by implant design over a 12-year follow-up period, and whether patient-related factors were associated with loss to follow-up and mortality risk.

Methods

Long-term follow-up of a randomized controlled trial was undertaken. A total of 212 patients were allocated a Triathlon or a Kinemax TKA. Patients were assessed preoperatively, and one, three, eight, and 12 years postoperatively using the Oxford Knee Score (OKS). Reasons for patient lost to follow-up, mortality, and revision were recorded.