Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Bone & Joint Research
Vol. 3, Issue 4 | Pages 108 - 116
1 Apr 2014
Cheng K Giebaly D Campbell A Rumley A Lowe G

Objective

Mortality rates reported by the National Joint Registry for England and Wales (NJR) were higher following cemented total knee replacement (TKR) compared with uncemented procedures. The aim of this study is to examine and compare the effects of cemented and uncemented TKR on the activation of selected markers of inflammation, endothelium, and coagulation, and on the activation of selected cytokines involved in the various aspects of the systemic response following surgery.

Methods

This was a single centre, prospective, case-control study. Following enrolment, blood samples were taken pre-operatively, and further samples were collected at day one and day seven post-operatively. One patient in the cemented group developed a deep-vein thrombosis confirmed on ultrasonography and was excluded, leaving 19 patients in this cohort (mean age 67.4, (sd 10.62)), and one patient in the uncemented group developed a post-operative wound infection and was excluded, leaving 19 patients (mean age 66.5, (sd 7.82)).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 12 - 12
1 Jan 2017
Hoffmann-Fliri L Hagen J Agarwal Y Scherrer S Weber A Altmann M Windolf M Gueorguiev B
Full Access

Hip fractures constitute the most debilitating complication of osteoporosis with a steadily increasing incidence in an aging population. Intramedullary nailing of osteoporotic proximal femoral fractures can be challenging because of poor implant anchorage in the femoral head. Recently, cement augmentation of PFNA blades with Polymethylmethycrylate (PMMA) has shown promising results by enhancing the cutout resistance in proximal femoral fractures. The aim of this biomechanical study was to assess the impact of cement augmentation on the fixation strength of TFNA blades and screws within the femoral head, and compare its effect with head elements placed in a center or antero–posterior off–center positions. Eight groups were formed out of 96 polyurethane foam specimens with low density, simulating isolated femoral heads with severe osteoporotic bone. The specimens in each group were implanted with either non–augmented or PMMA–augmented TFNA blades or screws in a center or antero–posterior off–center position, 7 mm anterior or 7 mm posterior. They were mechanically tested in a setup simulating an unstable pertrochanteric fracture with lack of postero–medial support and load sharing at the fracture gap. All specimens underwent progressively increasing cyclic loading until catastrophic construct failure. Varus–valgus and head rotation angles were monitored by an inclinometer mounted on the head. A varus collapse of 5° or a 10° head rotation were defined as the clinically relevant failure criterion. Load at failure for specimens with augmented TFNA head elements (screw center: 3799 N ± 326 (mean ± SD); blade center: 3228 N ± 478; screw off–center: 2680 N ± 182; blade off–center: 2591 N ± 244) was significantly higher compared to the respective non–augmented specimens (blade center: 1489 N ± 41; screw center: 1593 N ± 120; blade off–center: 1018 N ± 48; screw off–center: 515 N ± 73), p<0.001. In both non–augmented and augmented specimens, the failure load in center position was significantly higher compared to the respective off–center position, regardless of head element, p<0.001. Non–augmented TFNA blades in off–center position revealed significantly higher load at failure versus non–augmented screws in off–center position, p<0.001. Cement augmentation clearly enhances fixation stability of TFNA blades and screws. Non–augmented blades outperformed screws in antero–posterior off–center position. Positioning of TFNA blades in the femoral head is more forgiving than TFNA screws in terms of failure load. Augmentation with TFNA has not been approved by FDA