Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 59 - 59
1 Oct 2019
Sosa B Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom MPG Yang X
Full Access

Introduction. PJI is a devastating complication following total joint arthroplasty. In this study, we explore the efficacy of a bacteriophage-derived lysin, PlySs2, against in-vitro biofilm on titanium implant surfaces and in an acute in-vivo murine debridement antibiotic implant retention (DAIR) model of PJI. Methods. In-vitro: Xen 36 S. aureus biofilm was grown on Ti-6Al-4V mouse tibial implants for 1 day or 5 days and subsequently exposed to growth media, 1000× minimal inhibitory concentration (MIC) Vancomycin, or 5× MIC PlySs2. Implants were sonicated and analyzed for Colony Forming Units (CFU). In-vivo: A Ti-6Al-4V implant was inserted into the proximal tibia of C57BL/6J mice (n=21). All mice received 10. 4. CFU inoculation of Xen 36 S. aureus to the knee joint capsule and the infection was permitted 5 days to progress. On day 5 the mice were separated into three groups (n=7/group): (1) no further surgical intervention (control group), (2) irrigation and debridement (I&D) with saline, (3) I&D with 2mg/mL PlySs2. No implant-exchange was performed to mimic a debridement, antibiotic, and implant retention (DAIR) therapeutic strategy. All mice were sacrificed at day 10. Results. CFU counts for 1-day and 5-day in-vitro grown biofilm on implants demonstrate a >3log-fold reduction with PlySs2 compared to Vancomycin (p=0.01) with no significant difference between Vancomycin and control. In-vivo the addition of PlySs2 to Vancomycin treated mice reduces bacterial load in the periposthetic tissue and implant (p<0.05) with 5 days of treatment. Conclusion. PlySs2 5× MIC exhibits superior anti-microbial effect compared to Vancomycin on implants with 1-day and 5–5day biofilm maturities. The addition of PlySs2 to Vancomycin treatment of an acute established PJI further reduces tissue CFU and implants CFU. For any tables or figures, please contact the authors directly


Bone & Joint Research
Vol. 10, Issue 1 | Pages 77 - 84
1 Jan 2021
Milstrey A Rosslenbroich S Everding J Raschke MJ Richards RG Moriarty TF Puetzler J

Aims

Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on Staphylococcus aureus biofilms in vitro in the presence and absence of antibiotic agents.

Methods

S. aureus biofilms were grown on titanium discs (13 mm × 4 mm) in a bioreactor for 48 hours. Shockwaves were applied with either 250, 500, or 1,000 impulses onto the discs surrounded by either phosphate-buffered saline or antibiotic (rifampin alone or in combination with nafcillin). The number of viable bacteria was determined by quantitative culture after sonication. Representative samples were taken for scanning electron microscopy.