Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection.
Objectives:
Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs.Aims
Methods
The diagnosis of periprosthetic joint infection (PJI) can be challenging as the symptoms are similar to other conditions, and the markers used for diagnosis have limited sensitivity and specificity. Recent research has suggested using blood cell ratios, such as platelet-to-volume ratio (PVR) and platelet-to-lymphocyte ratio (PLR), to improve diagnostic accuracy. The aim of the study was to further validate the effectiveness of PVR and PLR in diagnosing PJI. A retrospective review was conducted to assess the accuracy of different marker combinations for diagnosing chronic PJI. A total of 573 patients were included in the study, of which 124 knees and 122 hips had a diagnosis of chronic PJI. Complete blood count and synovial fluid analysis were collected. Recently published blood cell ratio cut-off points were applied to receiver operating characteristic curves for all markers and combinations. The area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values were calculated.Aims
Methods
The ability of activated platelets to induce cellular proliferation is well recognised. In a previous diffusion model, platelets combined with Tri-calcium phosphate (TCP) led to an osteoprogenitor mitogenic response followed by cellular differentiation. This study was designed to look at osteoprogenitor responses when cultured directly onto TCP granules combined with activated platelets. Human osteoprogenitors were loaded onto TCP with activated platelets at a low seeding density and high seeding densities. Cellular proliferation was assessed using the pico-green DNA content analysis. Differentiation towards osteoblastic phenotype was assessed using an alkaline phosphatase assay. RNA extraction, reverse transcription and quantitative real-time polymerase chain reaction was used to assess gene expression for type 1 collagen and osteocalcin. Histological assessment for live/dead staining and alkaline phosphatase was used on cultured granule samples.Introduction
Method
We aim to evaluate the usefulness of postoperative blood tests by investigating the incidence of abnormal results following total joint replacement (TJR), as well as identifying preoperative risk factors for abnormal blood test results postoperatively, especially pertaining to anaemia and acute kidney injury (AKI). This is a retrospective cohort study of patients who had elective TJR between January and December 2019 at a tertiary centre. Data gathered included age at time of surgery, sex, BMI, American Society of Anesthesiologists (ASA) grade, preoperative and postoperative laboratory test results, haemoglobin (Hgb), white blood count (WBC), haematocrit (Hct), platelets (Plts), sodium (Na+), potassium (K+), creatinine (Cr), estimated glomerular filtration rate (eGFR), and Ferritin (ug/l). Abnormal blood tests, AKI, electrolyte imbalance, anaemia, transfusion, reoperation, and readmission within one year were reported.Aims
Methods
Rotator cuff tendon healing has proven to be a substantial clinical challenge. There is significant interest in finding biologic augmentation methods to improve this healing process. Two currently available products include platelet rich plasma/platelet rich fibrin matrix and several commercially available extra cellular matrix (ECM) patches. Platelet rich plasma is a sample of an autologous blood which has been centrifuged to a concentration of platelets three to four times that of normal.
The identification of different substances able to promote a cellular response in terms of proliferation and differentiation the so-called “morphogenetic proteins”, has expanded research, aiming to identify the cellular elements that produce these proteins, in order to find a source for clinical application.
Introduction.
Introduction:
Purpose: The purpose of our study, is to determine the role of erythropoetin administration, as an alternative to homologous banked blood transfusions in total hip arthroplasty. Material and Methods: We have carried out a prospective randomized, controlled study on 60 patients having unilateral total hip replacement. In all the above patients, the same surgical team applied the same surgical technique (hybrid THA) and they followed the same rehabilitation program. We examined 2 groups of patients. In group A, all the patients received intraoperatively one unit of homologous blood transfusion (average 1 unit/patient), according to the volume of blood collected in the suction device and to the anaesthesiologist’s estimation. We also administered 40,000 units of erythropoetin subcutaneously one day before the operation followed by 40,000 units (sc) every 3 days in a total scheme of 4 doses. A control group of 30 patients (group B), in whom standard suction drains were used, received intraoperatively one or two units of homologous blood transfusion (average 1,7 units/patient), and also additional blood transfusions when required. The admission of banked blood transfusion was determined by the Haemoglobin value (<
9mg/dl) and/or clinical signs (blood pressure, pulse etc.). The values of Haemoglobin, Haematocrit and
Autologous platelet rich plasma (PRP) has an established history of clinical use in dental and orthopaedic procedures. However, there is little scientific data demonstrating a mode of action and conflicting clinical data to support its use. The aim of this study was to determine the cellular and metabolic pathways by which PRP modulates the osteogenic response. PRP is a concentrate of platelets in a small volume of plasma derived from whole blood.
In the last few years the study of the biology of fracture repair processes has isolated chemical mediators that induce and modulate bone repair. In orthopaedic surgery and traumatology, in cases of unsuccessful fracture setting, loss of bone and in the treatment of bone cavities it is advisable to associate a biological substitute in order to restore bone continuity and to maintain the mechanical properties of the skeletal segment.
While preoperative bloodwork is routinely ordered, its value in determining which patients are at risk of postoperative readmission following total knee arthroplasty (TKA) and total hip arthroplasty (THA) is unclear. The objective of this study was to determine which routinely ordered preoperative blood markers have the strongest association with acute hospital readmission for patients undergoing elective TKA and THA. Two population-based retrospective cohorts were assembled for all adult primary elective TKA (n = 137,969) and THA (n = 78,532) patients between 2011 to 2018 across 678 North American hospitals using the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) registry. Six routinely ordered preoperative blood markers - albumin, haematocrit, platelet count, white blood cell count (WBC), estimated glomerular filtration rate (eGFR), and sodium level - were queried. The association between preoperative blood marker values and all-cause readmission within 30 days of surgery was compared using univariable analysis and multivariable logistic regression adjusted for relevant patient and treatment factors.Aims
Methods
Arthrodesis of the spine is the preferred surgical treatment for a number of pathological disorders. This process is dependent on three primary components: osteogenic cells with osteoblastic potential, osteoinductive growth factors and an osteoconductive scaffold that facilitates bone formation and vascular ingrowth. Several systemic and local factors are known to affect the rate of spinal fusion. Autogenous bone graft remains the gold standard graft material for spinal fusion. It is the only graft material that supplies the three primary components necessary for a solid fusion. Unfortunately autogenous bone is only available in limited quantities and the procurement of autograft is associated with significant donor site morbidity. A number of different bone graft materials have been developed as alternatives to autograft. These materials may be classified into two major groups, bone graft extenders used to augment autograft, or bone graft substitutes. Several different bone graft materials have been developed including allograft, osteoconductive matrices, demineralised bone matrices, bone marrow aspiration, autologous platelet concentration, growth factors and gene therapy. Allograft is currently the most widely used substitute for autogenous bone. Because any osteogenic cells are eradicated during the tissue processes, allograft is primary osteoinductive with minimal osteoinductive potential. Processing may affects the structural and biological characteristics of a graft. The incorporation of allograft occurs by a process similar to that observed with autograft but more slowly and is less complete. Osteoconductive scaffolds do not contain any osteogenic cells or osteoinductive factors and are used as a composite graft as a carrier for either osteogenic cells or osteoinductive growth factors. They are biocompatible and do not illicit a response. There is also no inherent risk of infection and availability is unlimited. These materials are brittle with poor mechanical properties and need to be protected from excessive biomechanical forces until fully incorporated. A number of osteoconductive scaffolds have been developed including ceramics, calcium sulfate, mineralized collagen, bioactive glasses, and porous metals. Dematerialized bone matrices (DMPs) are osteoinductive with variable osteoconductive properties. DMPs consist of Type I collagen and non-collagenous proteins including multiple signaling proteins. The osteoinductive activity of DMPs is due to a small fraction of bone morphogenic proteins. There is significant variability in the osteoinductive potentials and clinical efficacy of DBMs. DBMs are most effective when combined with autograft or bone marrow aspirate. Bone marrow aspiration provides osteogenetic cells and osteoinductive growth factors but must be combined with an osteoconductive carrier to form a composite graft. It is associated with minimal morbidity compared to the use of autograft and is easily obtained. Unfractionated bone marrow contains only moderate osteogenic potential. Selective retention technology can increase the number of osteogenic cells then combined with an osteoconductive carrier such as a collagen sponge or DBM. Activated platelets release multiple factors that may enhance bone formation by promoting chemotaxis, cellular proliferation and differentiation of stem cells.
This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05.Aims
Methods
Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca2+) content.Aims
Methods