Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 41 - 41
1 Feb 2020
Melnic C Aurigemma P Dwyer M Domingo-Johnson E Bedair H
Full Access

Background. Multiple retrospective studies have compared UC with traditional bearings and shown comparable results and outcomes when looking at clinical and radiologic variables, complications rates, and implant survivorship; however, debate still exists regarding the optimum bearing surface. The present study seeks to determine whether there are any preoperative patient demographic or medical factors or anatomic variables including femoral condylar offset and tibial slope that may predict use of a UC bearing when compared to a standard CR group. Methods. The study cohort consisted of 117 patients (41 males, 76 females) who underwent primary TKA with the senior author. The implants utilized were either the CR or UC polyethylene components of the Zimmer Persona Total Knee System. Insert selection was based on intraoperative assessment of PCL integrity and soft tissue balancing. Patient demographics (age, gender, BMI) and co-morbidities (hypertension, diabetes, depression, cardiac disease, and lung disease) were recorded. Intraoperative variables of interest included extension and flexion range of motion, estimated blood loss (EBL), tourniquet time, and polyethylene and femoral component sizes. We calculated change in tibial slope and femoral condylar offset from pre- to post-surgery and computed the percentage of patients for whom an increase in tibial slope or femoral condylar offset was determined. Postoperative variables, including length of stay, complication rates and reoperation rates, were recorded. All dependent variables were compared between patients who received the UC component and patients who received the CR component. Continuous variables were assessed using independent samples t-tests, while categorical variables were compared using the chi-square test of independence. Results. There were 39 patients who received a UC insert and 78 patients who received CR insert. Patient age (p = 0.58), BMI (p = 0.34), or sex distribution (p = 0.84) did not differ between the UC and CR groups. Mean LOS (3.59 vs. 3.08; p = 0.017), EBL (54.5 vs. 46.7; p=0.021), and tourniquet time (61.2 vs. 57.4; p=0.032) were greater for the UC group. Intraoperative implant variables, including polyethylene component (p = 0.49), femoral component (p = 0.56), use of a narrow femoral component (p = 0.85), and patellar component size (p = 0,83), were similar between groups. Additionally, preoperative (p = 0.46) and postoperative (p = 0.19) condylar offset and preoperative (p = 0.66) and postoperative (p = 0.23) tibial slope were not different between the groups. However, the proportion of patients for whom tibial slope increased postoperatively was greater for the UC group compared to the CR group (43.6 vs. 21.8% respectively, p=0.018). Conclusions. Our results showed that no preoperative medical co-morbidities or demographic factors predicted use of the UC bearing; however, postoperative tibial slope was increased for a greater number of patients who received the UC implant. Patients who have an increase in their slope from their native anatomy during tibial preparation may require additional balancing of the flexion gap, and use of a UC component may be beneficial in this particular group of patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 18 - 18
1 Jun 2021
Cushner F Schiller P Gross J Mueller J Hunter W
Full Access

PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA. SOLUTION. The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment. MARKET. The early target market for this device includes total joint surgeons who are early adopters of technology and currently utilize technology in their practice. The kinematic data provided by the Canturio™ TE∗ System will enable clinicians to augment patient care by reviewing their objective gait metrics. In the future, this data has the potential to be integrated with other Zimmer Biomet technologies, such as the Rosa™ Knee robotic platform, mymobility™, and sensored devices like iAssist™, to provide the surgeon with a complete pre-surgical functional assessment, intraoperative data, and post-operative functional data. PRODUCT. Persona IQ will be the combination of the proven Persona personalized total knee system with the Canary Medical Canturio™ TE∗. TIMING AND FUNDING. The Canturio™ TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution. The plan is to launch the product in 2021 pending regulatory De Novo grant. This effort is a partnership between Zimmer Biomet and Canary Medical. ∗ The Canturio™ - TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution