Achieving durable implant–host bone fixation is the major challenge in uncemented revision hip arthroplasty when significant bone stock deficiencies are encountered. The purpose of this study was to develop an experimental model which would simulate the clinical revision hip scenario and to determine the effects of alendronate coating on porous tantalum on gap filling and bone ingrowth in the experimental model. Thirty-six porous tantalum plugs were implanted into the distal femur, bilaterally of 18 rabbits for four weeks. There were 3 groups of plugs inserted; control groups of porous tantalum plugs (Ta) with no coating, a 2nd control group of porous tantalum plugs with micro-porous calcium phosphate coating, (Ta-CaP) and porous tantalum plugs coated with alendronate (Ta-CaP-ALN). Subcutaneous fluorochrome labelling was used to track new bone formation. Bone formation was analysed by backscattered electron microscopy and fluorescence microscopy on undecalcified histological sections.Introduction
Methods
to develop an experimental model which would simulate the clinical revision hip scenario and determine the effects of alendronate coating on porous tantalum on gap filling and bone ingrowth in the experimental model.
Titanium-alloy is a metal with excellent biocompatibility, but its
Long-term survival of massive prostheses used to treat bone cancers is associated with extra-cortical bone growth and osteointegration into a grooved hydroxyapatite coated collar positioned adjacent to the transection site on the implant shaft [1]. The survivorship at 10 years reduces from 98% to 75% where osteointegration of the shaft does not occur. Although current finite element (FE) methods successfully model bone adaption, optimisation of adventitious new bone growth and osteointegration is difficult to predict. There is thus a need to improve existing FE models by including biological processes of
Kokubo and one of the present authors (T.N) have developed a new technique of bioactive coating using alkaline and heat treatment, which induces the formation of a thin HA layer on the surface of titanium after implantation in the body. This new coating technique is not associated with degradation or separation of the HA coating, because a bone-like apatite layer of 1 μm in width begins to form in the body tissue after implantation. Chemically and thermally treated titanium possesses bone-bonding ability, which has been confirmed by detachment tests. Bone ingrowth into bioactive titanium continues to increase throughout the 26 weeks of implantation, whereas bone ingrowth into non-treated or HA plasma coating implants tends to decrease between 6 and 12 weeks. These findings suggest the long-term stability and
We report our 4 years’ experience using of demineralized human bone matrix (DBM) in the treatment of complex pathology characterised by bone loss or less regenerating ability, such as congenital or secondary bone mal-union, osteomyelitis, aseptic prosthetic failure, complex bone loss fractures, etc. Considering the known limitations of autologous transplants (limited quantity, infections and fractures of donor sites, operative and bleeding time increase, abdominal herniations, etc.), we have searched in the literature for alternative materials that would be as similar to the
The current gold standard bone substitute is still autologous bone, despite the fact that its harvest demands for a second operation site, causes additional pain, discomfort, potential destruction of the grafting site, and is limited in supply. Since newly developed clinical approaches like transplantation of cells are invasive and costly, and osteoinduction by bone morphogenetic proteins is expensive and is associated with mild to severe side effects, the optimization of
Bioabsorbable screws for anterior cruciate ligament reconstruction (ACLR) have been shown to be associated with femoral tunnel widening and cyst formation. To compare a poly-L-lactide–hydroxyapatite screw (PLLA-HA) with a titanium screw with respect to clinical and radiological outcomes over a 5 year period. 40 patients were equally randomized into 2 groups (PLLA-HA vs titanium) and ACLR performed with a 4 strand hamstring graft with femoral tunnel drilling via the anteromedial portal. Evaluation at 2 and 5 years was performed using the International Knee Documentation Committee assessment (IKDC), Lysholm knee score, KT 1000 arthrometer, single-legged hop test. Magnetic resonance imaging was used to evaluate tunnel and screw volume, ossification around the screws, graft integration and cyst formation. There was no difference in any clinical outcome measure at 2 or 5 years between the 2 groups. At 2 years, the PLLA-HA femoral tunnel was significantly smaller than the titanium screw tunnel (p=0.015) and at 5 years, there was no difference. At 2 years the femoral PLLA-HA screw was a mean 76% of its original volume and by 5 years, 36%. At 2 years the tibial PLLA-HA screw mean volume was 68% of its original volume and by 5 years, 46%. At 5 years, 88% of femoral tunnels and 56% of tibial tunnels demonstrated a significant ossification response. There was no increase in cyst formation in the PLLA-HA group and no screw breakages. The PLLA-HA screw provides adequate aperture fixation in ACLR with excellent functional outcomes. It was not associated with femoral tunnel widening or increased cyst formation when compared with the titanium screw. The resorbtion characteristics appear favourable and the hydroxyapatite component of the screw may stimulate
Summary. A specialised 3D- printed scaffold, combined with fillers and bioactive molecules, can be designed and characterised to demonstrate the efficacy of synthetic, off-the-shelf and custom fabricated scaffolds for the repair of long bone defects. Introduction. Using specialised three-dimensional (3-D) printing technology, combined with fillers and bioactive molecules, 3-D scaffolds for bone repair of sizable defects can be manufactured with a level of design customization that other methods lack. Hydroxyapatite (HA)/Beta-Tri-Calcium Phosphate (β -TCP) scaffold components may be created that provide mechanical strength, guide osseo- conduction and integration, and remodel over time. Additionally, research suggests that bone morphogenic protein (BMP) stimulates growth and differentiation of new bone. Therefore, we hypothesise that with the addition of BMP, HA- β -TCP scaffolds will show improved regeneration of bone over critical sized bone defects in an in vivo model. Patients & Methods. Scaffolds were implanted in six New Zealand White rabbits with a 10mm radial defect for 2 and 8 weeks. The scaffolds, made from 15% HA: 85% β-TCP, were designed using ROBOCAD design software and fabricated using a 3-D printing Robocast machine. Scaffolds were sintered at 1100°C for 4 hours with a final composition of 5% HA: ∼95% β-TCP. Micro-CT, histological analysis, and nanoindentation were conducted to determine the degree of new bone formation and remodeling. Results. Reconstructed microCT images show increased bone formation, remodeling, and integration in HA/ β -TCP-BMP scaffolds compared to virgin HA/ β -TCP scaffolds. Histological analysis showed increased bone formation but decreased
Background. The management of non-unions of subtrochanteric femoral fractures with associated implant failure is challenging. This study assessed the outcome of a cohort of patients treated according to the diamond concept. Methods. Between 2005–2010 all patients with subtrochanteric aseptic non-unions presented post implant failure (Gamma Nail breakage) were eligible in the absence of severe systemic pathologies and comorbidities. Demographics, initial fracture pattern, method of stabilisation, mode of failure of metal work, time to revision of fixation, complications, time to union, and functional outcome were recorded over a minimum period of follow-up of 12 months. The revision strategy was based on the “diamond concept;” optimising the mechanical and biological environment (revision of fixation, osteoinduction/BMP-7,
Purpose of the study: Biphasic macroporous phosphocalcium ceramics are used in routine surgery to fill bone defects. This type of material presents the characteristics of an ideal substitute: free of the adverse effects of grafts, biocompatibility, bioactivity,
Introduction. This study investigated the binding agent Calcium/Sodium Alginate fibre gel and the addition of autogenic bone marrow aspirate (BMA) on bone growth into a porous HA scaffold implanted in an ovine femoral condyle critical-sized defect. Our hypothesis was that Alginate fibre gel would have no negative effect on bone formation and
The use of autologous grafts for vertebral arthrodesis is associated with a number of complications that should be properly considered: pain at the harvesting site, increased blood loss, prolonged surgical time, and additional scar. Moreover, in many cases, the amount of autologous bone is insufficient. Novel materials, either natural or synthetic, are therefore needed to be used as bone substitutes in vertebral surgery. For this purpose, a number of synthetic materials have been developed, their characteristics varying considerably in terms of ostoinduction,
Introduction Recent publications have confirmed that as many as one in four retrieved femoral heads can be significantly contaminated with potential pathogens. Reports from the Centre for Disease Control in Atlanta, Georgia have described fatal outcomes from the unwanted transmission of bacterial disease with inadequately processed allograft materials. Surgeons requesting non terminally sterilised bone refer to theoretical biological and biomechanical deleterious effects of gamma irradiation. This study examines the accuracy of those claims. Methods We have investigated the effects of varying levels of gamma irradiation (0kG, 15kG and 25kG) on the biological competence of morsellised allograft bone and its associated biomechanical impaction qualities. The biological study has used an in vivo model (nude rat) to quantify the effects of gamma irradiation on osteoinduction and
When investigating orthopaedic biomaterials and tissue engineered devices, biological investigations by means of in vitro and in vivo tests are mandatory to obtain a overall picture of biocompatibility and therapeutic efficacy. However, various aspects requiring careful consideration should be kept in mind and can explain the complex situations encountered by researchers when the skeletal tissue is involved. This presentation aimed to summarize some useful information in improving in vivo methodology to test present and future therapies for orthopaedic surgery. Some in vivo biological tests to study innovative reconstructive surgical techniques are summarized on the basis of the experience of the Experimental Surgery Department –IOR. After in vitro and in vivo biocompatibility tests, for the study of bone defect healing and of biomaterial osteo-inductive properties the subcutaneous and intramuscular implants are usually performed in laboratory animals while
Purpose: Unless exposed to stress, bone undergoes lysis.
Bone impaction grafting (BIG) is a surgical technique for the restoration of bone stock loss with impaction of autograft or allograft bone particles (BoP). The goal of a series in-vitro and in-vivo experiments was to assess the suitability of deformable pure Ti (titanium) particles (TiP, FONDEL MEDICAL BV, Rotterdam, The Netherlands) for application as a full bone graft substitute in cemented revision total hip arthroplasty. TiP are highly porous (interconnective porosity before impaction 85 to 90%). In-vitro acetabular reconstructions were made in Sawbones (SAWBONES EUROPE, Malmö, Sweden) to evaluate migration by roentgen stereo photogrammetric analysis and shear force resistance by a lever out experiment. In-vitro femoral TiP reconstructions (SAWBONES, Malmö, Sweden) were used to evaluate micro-particle release and subsidence. Mature Dutch milk goats were used for two in-vivo experiments. A non-loaded femoral defect model was used to compare