Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 42 - 42
1 Jul 2020
Rollick N Helfet D Bear J Diamond O Wellman D
Full Access

Malreduction of the syndesmosis is a poor prognosticator following ankle fracture and has been documented in as many as 52% of patients following fracture fixation. The current standard for assessment of reduction of the syndesmosis is bilateral computed tomography (CT) scan of the ankle. Multiple radiographic parameters are utilized to define malreduction, however, there has been limited investigation into the accuracy of these measurements to differentiate malreduction from inherent anatomical asymmetry. The purpose of this study was to identify the prevalence of positive malreduction standards within the syndesmosis of native, uninjured ankles. Bilateral lower extremity CT scans including ankles were screened. Studies were excluded if the patient was skeletally immature, had pathology below the knee or if they had congenital neuromuscular syndromes. The resulting cohort consisted of 207 patients. The indication for bilateral CT scan was femoral acetabular impingement in 110 patients (53%), rotation assessment following arthroplasty in 32 patients (15%), rotation assessment following femoral fracture in 30 patients (14%), rotational assessment for patellar instability in 30 patients (14%) and five miscellaneous indications (2%). Fifty patients were reviewed by three observers independently and to determine inter-observer reliability. A single observer repeated the measurements within the same cohort four weeks later to evaluate intra-observer reliability. Three observers then measured the anterior syndesmotic distance, posterior syndesmotic distance, central syndesmotic distance, fibular rotation and sagittal fibular translation at 1cm from the distal tibial articular surface. Overall side to side variability between the left and right ankle were assessed. Previously studied malreduction standards were evaluated. These included: anterior to posterior syndesmotic distance > 2mm, central syndesmotic difference > 1.5mm, average syndesmotic distance > 2mm, fibular rotational difference > 10o and sagittal translational difference > 2mm. The inter- and intra-observer reliability was good to excellent for anterior, posterior and central syndesmotic distance, and fibular rotation measurements. Sagittal fibular translation had an ICC of 0.583, and thus was only of fair reliability. Side to side comparison revealed statistically significant difference in only anterior syndesmotic difference (p=0.038). A difference of anterior to posterior syndesmotic distance of greater than 2mm was observed in 43 patients (20.2%). Thirty eight patients (17.8%) had a central syndesmotic difference of greater than 1.5mm. A fibular rotational difference of greater than 10o was observed in 49 patients (23%). The average difference between the anterior and posterior syndesmosis was greater than 2mm in 17 patients (8.2%). Nine patients (4.2%) had sagittal translation of greater than 2mm. Eighty one patients (39%) demonstrated at least one parameter beyond previously set standards for malreduction. Only one parameters was anomalous in 54 patients (26%), 18 patients (8%) had two positive parameters, while eight patients (4%) had three. One patient was asymmetrical in all measured parameters. In this study there was no statistically significant asymmetry between ankles. However, 39% of native syndesmoses would be classified as malreduced on CT scan using previously studied malreduction limits. Current radiographic parameters are not sufficient to differentiate mild inherent anatomical asymmetry from malreduction of the syndesmosis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 233 - 233
1 Jul 2014
Ovaska M Mäkinen T Madanat R Kiljunen V Lindahl J
Full Access

Summary. Syndesmotic malreduction or failure to restore fibular length are the leading causes for early reoperation after ankle fracture surgery. Anatomic fracture reduction and congruent ankle mortise can be achieved in the majority of cases following revision surgery. Introduction. The goal of ankle fracture surgery is to restore anatomical congruity. However, anatomic reduction is not always achieved, and residual talar displacement and postoperative malreduction predispose a patient to post-traumatic arthritis and poor functional outcomes. The present study aimed to determine the most common surgical errors resulting in early reoperation following ankle fracture surgery. Patients & Methods. We performed a chart review to determine the most common types of malreductions that led to reoperation within the first week following ankle fracture surgery. From 2002 to 2011, we identified 5123 consecutive ankle fracture operations in 5071 patients. 79 patients (1.6%) were reoperated on due to malreduction (residual fracture displacement > 2mm) detected in postoperative radiographs. These patients were compared with an equal number of age- and sex-matched control patients. Surgical errors were classified according to the anatomical site of malreduction: fibula, medial malleolus, posterior malleolus, Chaput-Tillaux fragment, and syndesmosis. Problems related to syndesmotic reduction or fixation were further divided into four categories: malreduction of the fibula in the tibiofibular incisura due to malpositioning of a syndesmotic screw, persistent tibiofibular widening (TFCS > 6 mm), positioning of a syndesmotic screw posterior to the posterior margin of the tibia, and unnecessary use of a syndesmotic screw. Results. The mean patient age was 44 years (18 to 80), and 49% were women. There were no differences between the groups regarding diabetes, tobacco use, peripheral vascular disease, or alcohol abuse. The most common indication for reoperation was syndesmotic malreduction (47 of 79 patients; 59%). Other frequent indications for reoperation were fibular shortening and malreduction of the medial malleolus. We identified four main types of errors related to syndesmotic reduction or fixation, the most common being fibular malreduction in the tibiofibular incisura. The most commonly combined errors were malreductions of the fibula and syndesmosis, which occurred together in 16 of 79 patients (20%). Fracture-dislocation (p = 0.011), fracture type (p = 0.001), posterior malleolar fracture (p = 0.005), associated medial malleolar fracture (p = 0.001), duration of index surgery (p = 0.001), and associated medial malleolar fixation other than with two parallel screws (p = 0.045) were associated with reoperation. Correction of the malreduction was achieved in 84% of reoperated cases. Conclusion. Early reoperation after ankle fracture surgery was most commonly caused by errors related to syndesmotic reduction or failure to restore fibular length. In the majority of cases, postoperative malreduction was successfully corrected in the acute setting


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 13 - 13
1 Apr 2014
Shields D Marsh M Aldridge S Williams J
Full Access

The management of displaced forearm diaphyseal fractures in adults is predominantly operative. Anatomical reduction is necessary to infer optimal motion and strength. The authors have observed an intraoperative technique where passive pronosupination is examined to assess quality of reduction as a surrogate marker for active movement. We aimed to assess the value of this technique, but intentionally malreducing a simulated diaphyseal fracture of a radius in a cadaveric model, and measuring the effect on pronosupination. A single cadaveric arm was prepared and pronation/supination was examined according to American Academy of Orthopaedic Surgeons guidance. A Henry approach was then performed and a transverse osteotomy achieved in the radial diaphysis. A volar locking plate was used to hold the radius in progressive amounts of translation and rotation, with pronosupaintion measured with a goniometer. The radius could be grossly malreduced with no effect on pronation and supination until the extremes of deformity. The forearm showed more tolerance with rotational malreduction than translation. Passive pronation was more sensitive for malreduction than supination. The use of passive pronosupination to assess quality of reduction is misleading


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 64 - 64
1 Sep 2012
Mukhopadhyay S Metcalfe A Guha A Mohanty K Hemmadi S Lyons K O'Doherty D
Full Access

Introduction. Previous studies have demonstrated the need of accurate reduction of ankle syndesmosis. Measurement of syndesmosis is difficult on plain radiographs. Recently, a difference of 2mm in anterior and posterior measurements at incisura of the inferior tibio-fibular joint on CT has been described as a measure of malreduction (depicted as ‘G’ for ease of description). Our practice changed towards routine post operative bilateral CT following syndesmosis fixation to assess the reduction and identify potential problems at an early stage. The aim of this primarily radiological study was to determine if the use of bilateral cross sectional imaging brings additional benefit above the more conventional practice of unilateral imaging. Method. Between 2007 and 2009, nineteen patients with ankle fractures involving the syndesmosis were included in the study group who had bilateral CT post operatively. The values of ‘G’ and the mean diastasis (MD) were calculated, representing the average measurement between the fibula and the anterior and posterior incisura. Results. When compared to the normal side, eight out of nineteen (42%) cases were found to have a residual diastasis even after fixation across the syndesmosis, However, if a standard value of G(2mm) was used for the injured leg only, all of the nineteen cases would have abnormal values of ‘G’ following reduction. The value of G for the injured side was poorly correlated with the mean inter-limb diastasis (MD, R=0.23). Discussion. Our study has clearly demonstrated the need for individualising the assessment method to guide surgeons and radiologists prior to revision surgery. A standard value of ‘G’ of 2mm as the normal limit cannot be applied universally as apparent from the data presented in this study


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 30 - 30
1 Nov 2016
Martin R Meulenkamp B Desy N Duffy P Korley R Puloski S Buckley R
Full Access

Tibial plateau fractures are common injuries. Displaced fractures are treated with open reduction and internal fixation (ORIF). Goals of treatment include restoration of extremity axial alignment, joint stability and congruity, allowing for early motion and prevention of osteoarthritis. Short term results of surgical fixation of tibial plateau fractures are good, however, longer term outcomes have demonstrated a higher risk of end-stage arthritis and total knee arthroplasty. Despite the vast literature around tibial plateau fractures, to our knowledge there are no series examining post-operative reductions using axial imaging. It is our goal to define the incidence of articular malreductions following surgical fixation of tibial plateau fractures, to identify patient or surgeon factors associated with malreductions, and to define any regional patterns of malreduction location. De-identified post operative computed tomography (CT) scans were reviewed to identify tibial plateau malreductions with a step or gap greater than 2 mm, or condylar width greater than 5 mm. Three independent assessors reviewed the scans meeting criteria using Osirix DICOM software. Steps and gaps were mapped onto the axial sequence at the level of the joint line. Images were then matched to side and overlaid as best fit in Photoshop software to create a map of malreductions. A grid was created to divide the medial and lateral plateaus into quadrants to identify the density of malreductions by location. A multi-variate regression model was used to assess risk factors for malreduction. Sixty five post-operative CT scans were reviewed. Twenty one reductions had a step or gap more than 2 mm for a malreduction incidence of 32.3%. The incidence in patients undergoing submeniscal arthrotomy or fluoroscopic assisted reduction was 16.6% and 41.4%, respectively (p <0.001). Side of injury, age, BMI, AO fracture type, and use of locking plates were not predictive of malreduction. Malreductions were heavily weighted to the posterior lateral tibial plateau. The incidence of articular malreductions was high at 32.3%. Fluoroscopic reduction alone was a predictor for articular malreduction with most malreductions located in the posterior lateral quadrants of the plateau


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 96 - 96
1 Jul 2020
Khan M Alolabi B Horner N Stride D Wang J
Full Access

Ankle fractures are the fourth most common fracture requiring surgical management. The deltoid ligament is considered the primary stabilizer of the ankle against a valgus force. The management of the deltoid ligament in ankle fractures is currently a controversial topic no consensus exists regarding repair in the setting of ankle fractures. The purpose of this systematic review is to examine the role and indications for deltoid ligament repair in ankle fractures. A systematic database search was conducted with Medline, Pubmed and Embase for relevant studies discussing patients with ankle fractures involving deltoid ligament rupture and repair. The papers were screened independently and in duplicate by two reviewers. Study quality was evaluated using the MINORs criteria. Data extraction included post-operative outcomes, pain, range of motion (ROM), function, medial clear space (MCS), syndesmotic malreduction and complication rates. Following title, abstract and full text screening, 10 eligible studies published between 1987 and 2017 remained for data extraction (n = 528). The studies include 325 Weber B and 203 Weber C type fractures. Malreduction rate in studies with deltoid ligament repair was 7.4% in comparison to those without repair at 33.3% (p < 0.05). Eleven (4%) of deltoid ligament repair patients returned for re-operation to have implants removed in comparison to eighty three (42%) of those without repair (p < 0.05). There was no significant difference for pain, function, ROM, MCS and complication rates (p < 0.05). The mean operating time of deltoid ligament repair groups was 20 minutes longer than non-repair groups(p < 0.05). Deltoid ligament repair offers significantly lower syndesmotic malreduction rates and reduced re-operation rates for hardware removal when performed instead of transsyndesmotic screw fixation. When compared to non-repair groups, there are no significant differences in pain, function, ROM, MCS and complication rates. Deltoid ligament repair should be considered for ankle fracture patients with syndesmotic injury, especially those with Weber C. Other alternative syndesmotic fixation methods such as suture button fixation should be explored. A large multi-patient randomized control trial is required to further examine the outcomes of ankle fracture patients with deltoid ligament repair


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_21 | Pages 10 - 10
1 Dec 2017
Boyd R Bintcliffe F
Full Access

Introduction. Injury to the syndesmosis is not always clearly demonstrated on radiographs and different tests have been described to assess for injury. In the presence of a significant injury to the syndesmosis, surgical fixation is often indicated and various fixation methods have been described. If the result of surgery is any mal-reduction of the fibula, this may result in ongoing ankle pain. Assessing how well the fibula has been reduced intra-operatively is currently limited to image intensifier views. We have previously developed a simple assessment, which has been shown to give accurate intra-operative demonstration of an injury to the syndesmosis. Our objective was to ascertain if the same test could demonstrate any malreduction of the fibular after repair of a syndesmosis injury. Methods. Seven fresh frozen cadavers had complete sydesmosis disruption performed before fixation using a well-recognised technique with a single 3.5 mm small fragment screw. Purposeful malreduction was performed in three ankles and standard reduction in the remaining four. 2–5mls of contrast medium was then injected into the ankle joint. Results. When there had been a malreduction, an obvious ‘blush’ of dye leaked superiorly into the surrounding soft tissues, whereas a normal ankle arthrogram was shown when the fibular had been anatomically reduced into the incisura and well fixed. Conclusion. This cadaveric study showed the test to be an easy and reliable adjuct to assess for acute malreduction of a syndesmosis injury


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_19 | Pages 16 - 16
1 Nov 2016
Roberts V Mason L Harrison E Molloy A Mangwani J
Full Access

Introduction. We performed a longitudinal outcome study involving the operative management of ankle fractures at two university teaching hospitals. This was a retrospective review of the quality of reduction and a prospective study into the functional outcome. Methods. All patients undergoing open reduction internal fixation of the ankle between November 2006 and November 2007 at one centre, and January to December 2009 at the other were included. Adequacy of reduction was assessed on the initial post-operative radiographs using Pettrone's criterion. The post-operative functional outcome was recorded using the Lower Extremity Functional Scale (LEFS), completed by postal or telephone follow-up at 64 months post injury (60–74 months). Results. There were 261 patients in the cohort, with a mean age of 47 years (17–91). Weber B fractures were sustained in 193 patients compared to 68 Weber C fractures. The medial malleolus was fractured in 43 cases, and a large posterior malleolar fragment (>20%) was found in 13 cases. Malreduction of the Weber B cohort was identified in 61 ankles (31%): Malreduction of the Weber C cohort was identified in 25 cases (37%): At time of follow-up 26 patients were not traceable or had died. Of the surviving 235 patients, 139 responded to the LEFS questionnaire (60%). The mean LEFS was 58 (out of 80) in the Weber B cohort and 61 in the Weber C cohort. Significantly lower LEFS were found in patients who had a malreduction in 2 or more criteria. Conclusion. Our study shows that there is high incidence of malreduction in the operative treatment of ankle fractures which leads to a significantly poorer functional outcome. We strongly recommend that adequate care and supervision are used in theatre together with post-operative independent review of intra-operative fluoroscopy images


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 8 - 8
17 Jun 2024
Aamir J Caldwell R Long S Sreenivasan S Mayrotas J Panera A Jeevaresan S Mason L
Full Access

Background. Many approaches to management of medial malleolar fractures are described in the literature however, their morphology is under investigated. The aim of this study was to analyse the morphology of medial malleolar fractures to identify any association with medial malleolar fracture non-union or malunion. Methods. Patients who had undergone surgical fixation of their MMF were identified from 2012 to 2022, using electronic patient records in a single centre. Analysis of their preoperative, intraoperative, and postoperative radiographs was performed to determine their morphology and prevalence of non-union and malunion. Lauge-Hansen classification was used to characterise ankle fracture morphology and Herscovici classification to characterise MMF morphology. Results. A total of 650 patients were identified across a 10-year period which could be included in the study. The overall non-union rate for our cohort was 18.77% (122/650). The overall malunion rate was 6.92% (45/650). There was no significant difference in union rates across the Herscovici classification groups. Herscovici type A fractures were significantly more frequently malreduced at time of surgery as compared to other fracture types (p=.003). Medial wall blowout combined with Hercovici type B fractures showed a significant increase in malunion rate. There is a higher rate of bone union in patients who have been anatomically reduced. Conclusion. The morphology of medial malleolar fractures does have an impact of the radiological outcome following surgical management. Medial wall blowout fractures were most prevalent in adduction-type injuries; however, it should not be ruled out in rotational injuries with medial wall blowouts combined with and Herscovici type B fractures showing a significant increase in malunions. Herscovici type A fractures had significantly higher malreductions however the clinical implications of mal reducing small avulsions is unknown


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 56 - 56
1 Mar 2021
Schneider P Thoren J Cushnie D Del Balso C Tieszer C Sanders D
Full Access

Flexible fixation techniques combined with anatomic (open) syndesmosis reduction have demonstrated improved functional outcomes and rates of malreduction. Suture-button devices allow physiologic motion of the syndesmosis without need for implant removal, which may lower the risk of recurrent syndesmotic diastasis. There is limited longer-term assessment of the maintenance of reduction between static and flexible syndesmotic fixation using bilateral ankle CT evaluation. This is an a priori planned subgroup analysis of a multi-centre, randomized clinical trial comparing static syndesmosis fixation (two 3.5 mm screws) with flexible fixation (single knotless Tightrope) for patients with AO- OTA 44-C injuries. Patients who completed bilateral ankle CT scans at 3- and 12-month follow-up were included. The primary outcome measure was syndesmotic malreduction based on bilateral ankle CT scans, using the uninjured, contralateral ankle as a control. Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance were calculated to measure syndesmosis reduction. Secondary outcomes included re-operation, adverse events and functional outcomes including the EQ5D, Olerud-Molander Ankle Score (OM), Foot and Ankle Disability Index (FADI), and Work Productivity Activity Impairment Questionnaire (WPAI). Paired samples t-tests were used to compare injured to control ankles (R, v 3.5.1). 42 patients (24 Group S, 18 Group T) were included. ASD for Group T was 5.22mm (95%CI 4.69–5.77) at 3 months compared to 4.26mm (95%CI 3.82–4.71; p=0.007) in controls and 5.38mm (95%CI 4.72–6.04) at 12 months compared to 4.44mm (95%CI 3.73–5.16; p=0.048) in controls. ASD for Group S was 4.63mm (95%CI 4.17– 5.10) at 3 months compared to 4.67mm (95%CI 4.24–5.10; p=0.61) in controls, but significantly increased to 5.73mm (95%CI 4.81–6.66) at 12 months compared to 4.65mm (95%CI 4.15–5.15; p=0.04) in controls. MSD results were similar; Group T had a larger MSD than control ankles at 3 months (p=0.03) and 12 months (p=0.01), while the MSD in Group S was not different at 3 months (p=0.80) but increased at 12 months (p=<0.01). 88% (21/24) of Group S had broken or removed screws by 12 months. Unplanned re-operation was 15% in Group S and 4% in Group T (p=0.02), with an overall re-operation rate of 30% in Group S. There was no significant difference between treatment groups for EQ-5D, OM, FADI or WPAI at 3- or 12-month follow-up. Tightrope fixation resulted in greater diastasis of the ASD and MSD compared to contralateral, uninjured ankles at 3- and 12-months post-fixation. Group S initially had syndesmotic reduction similar to control ankles, but between 3- and 12-months post-fixation, there was significantly increased syndesmosis diastasis compared to controls. The majority of Group S (88%) had either broken screws or scheduled screw removal, which may explain the increased tibio-fibular diastasis seen at 12-months


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 110 - 110
11 Apr 2023
Lee K Lin J Lynch J Smith P
Full Access

Variations in pelvic anatomy are a major risk factor for misplaced percutaneous sacroiliac screws used to treat unstable posterior pelvic ring injuries. A better understanding of pelvic morphology improves preoperative planning and therefore minimises the risk of malpositioned screws, neurological or vascular injuries, failed fixation or malreduction. Hence a classification system which identifies the clinically important anatomical variations of the sacrum would improve communication among pelvic surgeons and inform treatment strategy. 300 Pelvic CT scans from skeletally mature trauma patients that did not have pre-existing posterior pelvic pathology were identified. Axial and coronal transosseous corridor widths at both S1 and S2 were recorded. Additionally, the S1 lateral mass angle were also calculated. Pelvises were classified based upon the sacroiliac joint (SIJ) height using the midpoint of the anterior cortex of L5 as a reference point. Four distinct types could be identified:. Type-A – SIJ height is above the midpoint of the anterior cortex of the L5 vertebra. Type-B – SIJ height is between the midpoint and the lowest point of the anterior cortex of the L5 vertebra. Type-C – SIJ height is below the lowest point of the anterior cortex of the L5 vertebra. Type-D – a subgroup for those with a lumbosacral transitional vertebra, in particular a sacralised L5. Differences in transosseous corridor widths and lateral mass angles between classification types were assessed using two-way ANOVAs. Type-B was the most common pelvic type followed by Type-A, Type-C, and Type-D. Significant differences in the axial and coronal corridors was observed for all pelvic types at each level. Lateral mass angles increased from Types-A to C, but were smaller in Type-D. This classification system offers a guide to surgeons navigating variable pelvic anatomy and understanding how it is associated with the differences in transosseous sacral corridors. It can assist surgeons’ preoperative planning of screw position, choice of fixation or the need for technological assistance


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_14 | Pages 4 - 4
1 Dec 2015
Walter R Trimble K Westwood M
Full Access

Lisfranc fracture dislocations of the midfoot are uncommon but serious injuries, associated with posttraumatic arthrosis, progressive deformity, and persistent pain. Management of the acute injury aims to restore anatomic tarsometatarsal alignment in order to minimise these complications. Reduction and stabilisation can be performed using image-guided percutaneous reduction and screw stabilisation (aiming to minimise the risk of wound infection) or through open plating techniques (in order to visualise anatomic reduction, and to avoid chondral damage from transarticular screws). This retrospective study compares percutaneous and open treatment in terms of radiographic reduction and incidence of early complications. Case records and postoperative radiographs of all patients undergoing reduction and stabilisation of unstable tarsometatarsal joint injuries between 2011 and 2014 in our institution were reviewed. Dorsoplantar, oblique and lateral radiographs were assessed for accuracy of reduction, with malreduction being defined as greater than 2mm tarsometatarsal malalignment in any view. The primary outcome measure was postoperative radiographic alignment. Secondary outcome measures included the incidence of infection and other intra- or early postoperative complications. During the study period, 32 unstable midfoot injuries were treated, of which 19 underwent percutaneous reduction and screw stabilisation and 13 underwent open reduction and internal fixation. Of the percutaneous group, no wound infections were reported, and there were four (21.1%) malreduced injuries. Of the open group, two infections (15.4%) were observed, and no cases of malreduction. In conclusion, our study shows a strong trend towards increased risk of malreduction when percutaneous techniques are used to treat midfoot injuries, and an increased risk of infection when open surgery is used. Whilst conclusions are limited by the retrospective data collection, this study demonstrates the relative risks to consider when selecting a surgical approach


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_17 | Pages 15 - 15
1 Nov 2014
Prior C Wellar D Widnall J Wood E
Full Access

Introduction:. Fibular malreduction is a common and important cause of pain after surgical fixation following a syndesmosis injury, but it is unclear which components of malreduction correspond to clinical outcome. Plain radiographs have been shown to be unreliable at measuring malreduction when compared to CT scans. A number of published methods for measuring fibular position rely on finding the axis of the fibula. Elgafy demonstrated that fibular morphology varies greatly, and some studies have demonstrated difficulty finding the fibular axis. Methods:. We developed a new method of measuring the distal fibular position on CT images. We used CT studies in 16 normal subjects. Two assessors independently measured the ankle syndesmosis using the Davidovitch method, and our new protocol for fibular AP position, diastasis and fibular length. Results:. We demonstrated that after statistical analysis (Pearson Product Moment Correlation) our method showed improved inter-observer reliability (r = 0.99 and 0.95 vs 0.59 and 0.78 respectively) for diastasis and AP translation, and improved intra-observer reliability (r = 0.99 and 0.99 vs 0.91 and 0.97 respectively). We found inter and intra observer reliability of 0.80 and 0.91 respectively for fibular length, but were unable to find a novel, accurate method for measuring fibular rotation. Conclusions:. Our method is a new, simple, accurate and reproducible system for measuring the ankle syndesmosis. We believe that this method could be used to assess fibular reduction after obtaining CT images of the uninjured side for comparison


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 61 - 61
1 Jan 2017
Gueorguiev B Hagen J Klos K Lenz M Richards R Simons P
Full Access

Injury to the syndesmosis occurs in 10–13% of all operative ankle fractures and there is evidence that both incomplete treatment and malreduction of the syndesmosis can lead to poor clinical outcomes. Much attention has been given to post–operative malreduction documented by computer tomography (CT), however, there is limited data about the intact positioning and relative motion of the native syndesmosis. The aim of this study is to elucidate more detailed information on the position of the fibula in the syndesmosis during simulated weight–bearing in intact state, with sequential ligament sectioning and following two reconstructive techniques. Fourteen paired, fresh–frozen human cadaveric limbs were mounted in a weight–bearing simulation jig. CT scans were obtained under simulated foot–flat loading (75 N) and in single–legged stance (700 N), in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. The elements of the syndesmosis and the deltoid ligament were sequentially sectioned. One limb of each pair was then reconstructed via one of two methods: Achilles autograft and peroneus longus ligamentoplasty. The specimens were rescanned in all 5 foot positions following each ligament resection and reconstruction. Measurements of fibular diastasis, rotation and anterior–posterior translation were performed on the axial cuts of the CT scans, 1 cm proximal to the roof of the plafond. Multiple measurements were made to define the position of the fibula in the incisura. Clinically relevant deformity patterns were produced. The deformity at the incisura was consistent with clinical injury, and the degree of displacement in all ligament states was dependent on the foot position. The most destructive state resulted in the most deformity at the syndesmosis. Differences between the intact and reconstructed states were found with all measurements, especially when the foot was in external rotation and dorsiflexion. There was no significant difference with direct comparison of the reconstructions. This study has detailed the motion of the fibula in the incisura and its variation with foot position. Neither reconstruction was clearly superior and both techniques had difficulty in the externally rotated and dorsiflexed foot positions. This study design can serve as a model for future ex–vivo testing of reconstructive techniques


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 75 - 75
1 Aug 2020
Axelrod D Al-Asiri J Johal H Sarraj M
Full Access

The purpose of this project was to evaluate North American trauma surgeon preferences regarding patient positioning for antegrade fixation of mid shaft femoral shaft fractures. This project was a cross sectional survey taken of orthopaedic fellows and staff surgeons, belonging to three organizations across North America. An estimated sample size was calculated a priori, while various online techniques were utilized to reduce non responder and fatigue bias. The survey was distributed multiple times to optimize yield. Two hundred twelve (212) participants responded in full, 134 (56%) of whom practiced in Canada. The majority of surgeons worked in level one trauma centres (74%), while 72% treated more than one femoral shaft fracture per week. The most common patient position for mid shaft fixation amongst all surgeons was lateral positioning with manual traction (68%), however community surgeons were significantly more likely to use a fracture table. The most common difficulties faced with using a fracture table were inability to achieve fracture reduction and peroneal nerve palsies. The majority (64%) of surgeons quoted a complication rate with fracture tables of greater than 1 per 100 cases. Lateral position with use of manual traction is the preferred set up for antegrade fixation of femoral shaft fracture in this large North American cohort of trauma surgeons. However, a large subset of community and non academic surgeons still prefer use of the fracture table. Amongst all respondents, a high rate of fracture table complications, including malreduction, were quoted. To date, there is no prospective data comparing these two options for patient positioning, and a randomized controlled trial may be an appropriate next step


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 31 - 31
1 Nov 2016
Morellato J Louati H Bodrogi A Stewart A Papp S Liew A Gofton W
Full Access

Traditional screw fixation of the syndesmosis can be prone to malreduction. Suture button fixation however, has recently shown potential in securing the fibula back into the incisura even with intentional malreduction. Yet, if there is sufficient motion to aid reduction, the question arises of whether or not this construct is stable enough to maintain reduction under loaded conditions. To date, there have been no studies assessing the optimal biomechanical tension of these constructs. The purpose of this study was to assess optimal tensioning of suture button fixation and its ability to maintain reduction under loaded conditions using a novel stress CT model. Ten cadaveric lower limbs disarticulated at the knee were used. The limbs were placed in a modified external fixator frame that allows for the application of sustained torsional (5 Nm), axial (500 N) and combined torsional/axial (5Nm/500N) loads. Baseline CT scans of the intact ankle under unloaded and loaded conditions were obtaining. The syndesmosis and the deltoid ligament complex were then sectioned. The limbs were then randomised to receive a suture button construct tightened at 4 kg force (loose), 8 kg (standard), or 12 kg (maximal) of tension and CT scans under loaded and unloaded conditions were again obtained. Eight previously described measurements were taken from axial slices 10 mm above the tibiotalar joint to assess the joint morphology under the intact and repair states, and the three loading conditions: a measure of posterolateral translation (a, b), medial/lateral translation (c, g), a measure of anterior-posterior translation (f), a ratio of anterior-posterior translation (d/e), an angle (Angle 1) created by a line parallel to the incisura and the axis of the fibula, and an angle (Angle 2) created between the medial surfaces of two malleoli. These measurements have all been previously described. Each measurement was taken at baseline and compared with the three loading scenarios. A repeated measures ANOVA with a Bonferroni correction for multiple comparisons was used to test for significance. Significant lateral (g, maximum 5.26 mm), posterior (f, maximum 6.42 mm), and external rotation (angle 2, maximum 11.71°) was noted with the 4 kg repair when compared to the intact, loaded state. Significant posterior translation was also seen with the both the 8 kg and 12 kg repairs, however the incidence and magnitude was less than with the 4 kg repair. Significant overcompression (g, 1.69 mm) was noted with the 12 kg repair. Suture button constructs must be appropriately tensioned to maintain reduction and re-approximate the degree of physiological motion at the distal tibiofibular joint. If inserted too loosely, these constructs allow for supraphysiologic motion which may have negative implications on ligament healing. These constructs also demonstrate overcompression of the syndesmosis when inserted at maximal tension however the clinical effect of this remains to be determined


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 11 - 11
1 Mar 2021
Wong M Wiens C Kooner S Buckley R Duffy P Korley R Martin R Sanders D Edwards B Schneider P
Full Access

Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional CT static images do not provide a complete picture of syndesmosis position, giving potentially misleading results. Dynamic CT technology has the ability to image joints in real time, as they are moved through a range-of-motion (ROM). The aim of this study was to determine if syndesmosis position changes significantly throughout ankle range of motion, thus warranting further investigation with dynamic CT. This is an a priori planned subgroup analysis of a larger multicentre randomized clinical trial, in which patients with AO-OTA 44-C injuries were randomized to either Tightrope or screw fixation. Bilateral ankle CT scans were performed at 1 year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). In the uninjured ankles, three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance, in order to determine normal syndesmosis position. Paired samples t-tests compared measurements taken at maximal DF and maximal PF. Twelve patients (eight male, six female) were included, with a mean age of 44 years (±13years). The mean maximal DF achieved was 1-degree (± 7-degrees), whereas the mean maximal PF was 47-degrees (± 8-degrees). The ASD in DF was 3.0mm (± 1.1mm) versus 1.9mm (± 0.8mm) in PF (p<0.01). The MSD in DF was 3.3mm (±1.1mm) versus 2.3mm (±0.9mm) in PF (p<0.01). The PSD in DF was 5.3mm (±1.5mm) versus 4.6mm (±1.9mm) in PF (p<0.01). These values are consistent with the range of normal parameters previously reported in the literature, however this is the first study to report the ankle position at which these measurements are acquired and that there is a significant change in syndesmosis measurements based on ankle position. Normal syndesmosis position changes in uninjured ankles significantly throughout range of motion. This motion may contribute to the variation in normal anatomy previously reported and controversies surrounding quantifying anatomic reduction after injury, as the ankle position is not routinely standardized, but rather static measurements are taken at patient-selected ankle positions. Dynamic CT is a promising modality to quantify normal ankle kinematics, in order to better understand normal syndesmosis motion. This information will help optimize assessment of reduction methods and potentially improve patient outcomes. Future directions include side-to-side comparison using dynamic CT analysis in healthy volunteers


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 133 - 133
1 Nov 2018
Mercer D
Full Access

Advancements in treating complications of operatively treated distal radius fractures. We will review tips and tricks to avoid complications associated with operative fixation of these complicated injuries. We will cover treatment of the distal radioulnar joint, associated distal ulna fracture, complications of malreduction and implant prominence. During this session, we will review the latest techniques for treating these complex distal radius fractures and how to avoid associated complications


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 238 - 238
1 Sep 2012
Naqvi G Shafqat A Cunningham P Awan N
Full Access

Introduction. In this cohort study, the TightRope® fixation technique has been compared with the traditional screw fixation for ankle syndesmosis injuries, with respect to the accuracy of the syndesmotic reduction and their clinical correlation. Patients and Methods. This cohort study included consecutive patients treated for ankle syndesmotic diastases between July 2007 and June 2009. Single slice axial CT scans of both the ankles together were performed at the level of syndesmosis, 1 cm above the tibial plafond. More than 2 mm widening of syndesmosis as compared to normal contra-lateral ankle was considered as significant malreduction. Clinical outcomes were measured using AOFAS and FADI Scores. Results. Forty-six out of 55 eligible patients attended for the study. Twenty three patients were in the tightRope group and 23 in the syndesmosis screw group. Mean follow-up was 2.5 (1.5–3.5) years. Average age was 41.6 years in tightrope group and 39.8 years in syndesmosis screw group. The mean width of normal syndesmosis was 4.01 + 0.89 mm. In tightRope group the mean width of syndesmosis was 4.37 + 1.12 mm (t-test, p = 0.30) as compared to 5.16 + 1.92 mm in screw group (t-test, p = 0.01). Five (21.7%) out of 23 ankles in screw group had syndesmotic mal reduction, while none of the tightRope group showed mal-reduction on CT scans (fisher's exact test, p = 0.04). There was no significant difference in mean post operative AOFAS score (89.56 and 86.52) and FADI score (82.42 and 81.22) between two groups. Conclusion. The results of this study indicate that tightRope provides more accurate method of syndesmosis stabilization as compared with screw fixation. Syndesmosis malreduction is the most important independent predictor of clinical outcomes; therefore care should be taken to reduce the syndesmosis accurately


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 575 - 575
1 Nov 2011
Schemitsch EH Lescheid J Zdero R Shah S Kuzyk PR
Full Access

Purpose: Optimal fixation for comminuted proximal humerus fractures is controversial. Complications using locked plates have been addressed by anatomic reduction or medial cortical support. The current study measured relative mechanical contributions of varus malalignment and medial cortical support. Method: Forty synthetic humeri were divided into three groups, osteotomized, and fixed at 0, 10, and 20 degrees of varus malreduction with locked proximal humerus plates (AxSOS, Global model, Stryker, Mahwah, NJ, USA). This simulated mechanical medial support with the cortex intact. Axial, torsional, and shear stiffness were experimentally measured. Half of the specimens in each of the groups underwent a second osteotomy to create a segmental defect which simulated loss of medial support with the cortex removed. Axial, torsional, and shear stiffness experiments were repeated, followed by shear load to failure in 20 degrees of abduction. Results: For isolated malreduction with the cortex intact, the repair construct at 0 degrees showed statistically equivalent or higher axial, torsional, and shear stiffness than other groups assessed. Subsequent removal of cortical support in half the specimens resulted in a drastic effect on axial, torsional, and shear stiffness at all varus angles. Repair constructs with the cortex intact at 0 and 10 degrees resulted in mean shear failure forces of 12965.4 N and 9341.1 N, respectively. These were statistically higher (p< 0.05) compared to most other groups tested. Specimens failed mainly by plate bending as the femoral head was pushed down medially and distally. Conclusion: Anatomic reduction with the medial cortex intact was the stiffest construct after a simulated two-part fracture. This study also supports the practice of achieving medial cortical support by fixing proximal humeral fractures in varus if necessary. This may be preferable to fixing the fracture in anatomic alignment when there is a medial fracture gap