Distal femoral varus osteotomy is a procedure intended to relieve pain, correct valgus deformity, and delay or possibly prevent the progression of
INTRODUCTION. Controversy exists regarding the ability of unicompartmental knee arthroplasty (UKA) to restore native knee kinematics, with some studies suggesting native kinematics are restored in most or all patients after UKA. 1–3. , while others indicate UKA fails to restore native knee kinematics. 4,5. Previous analysis of UKA articular contact kinematics focused on the replaced compartment. 2,5. , neglecting to assess the effects of the arthroplasty on the contralateral compartment which may provide insight to future pathology such as accelerated degeneration due to overload. 6. or a change in the location of cartilage contact. 7. The purpose of this study was to assess the ability of medial UKA to restore native knee kinematics, contact patterns, and
Distal femoral varus osteotomy is a procedure intended to relieve pain, correct valgus deformity, and delay or possibly prevent the progression of
Introduction:. The number of medial unicompartmental knee arthroplasties (UKA) performed over the last decade has increased by 30%, as studies have demonstrated improved knee kinematics, range of motion, and decreased perioperative morbidity versus total knee arthroplasty. However, concerns remain regarding the future risk of revision due to
Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the
Goodfellow &
Bullough (1968) first described the pattern of articular cartilage wear in the elbow. More recent post mortem studies have shown that advanced degenerative changes can develop in the radio-capitellar (lateral) compartment of elbow joints of elderly subjects in which the humeroulnar (medial) compartment remains remarkably well preserved. We have reviewed the findings in a consecutive series of 117 elbow arthroscopies performed on patients with elbow pain resistant to conservative treatments (age range 21–80 years: mean age 51 years). We documented established degenerative changes involving articular cartilage in 68 patients (59%). In this group we found that in 60 patients (88%) the degenerative changes were confined to the
The aim of this study was to assess the distribution of wear down to bone in
Purpose: The purpose of this study was to determine what differences exist in the knee flexion, rotation and adduction moments and periarticular knee muscle activation patterns between subjects with medial compartment knee osteoarthritis (OA) and those with
Soft tissue balancing in fixed genu valgum can be challenging and may lead to instability in flexion. Current techniques involve release of the tight secondary structures initially, with the fascia lata and the lateral capsule usually addressed first, and then the posterior capsule if necessary. If ligament testing does not permit neutral alignment in extension, release of the lateral collateral ligament becomes necessary. The most common way of achieving neutral alignment is by lengthening the lateral structures through elevation of the proximal insertion of the lateral collateral ligament (LCL). This technique has two drawbacks: the lengthening affects both extension and flexion gaps and may give rise to excessive external rotation of the femoral implant, with too much offset of the rotational centre. Particularly when non-constrained prostheses are used, the resulting lateral instability in flexion can be a problem. An alternative is to perform a release at the level of the distal insertion of the LCL, as advocated by Keblish and Buechel. However, this still induces undue external rotation of the femoral implant. We think that if the situation in flexion before any release is satisfactory in terms of the patella, it should not be changed. This means that in order to maintain optimal patellofemoral function, the flexion gap should be addressed before any release. The task is then to achieve a good extension gap with a well-aligned knee. In fixed valgus deformities, this means distal translocation of the femoral insertion of the LCL by distal sliding lateral condylar osteotomy. This procedure aims to preserve the flexion condition and to allow distal slide of the lateral condylar osteotomised fragment. In doing the osteotomy, it is important to make the lateral fragment sufficiently large to allow relocation of the osteotomised fragment inside the prosthesis. This provides the immediate stability necessary for good healing. We have been using two simple cortical screws to ensure stability of the fragment. This paper reports our experience in 100 cases.
Abstract. Introduction. Patient selection is key to the success of medial unicondylar knee arthroplasty (UKA). Progression of arthritis is the most common indication for revision. Various methods of assessing the
Biplane video X-ray (BVX) – with models segmented from magnetic resonance imaging (MRI) – is used to directly track bones during dynamic activities. Investigating tibiofemoral kinematics helps to understand effects of disease, injury, and possible interventions. Develop a protocol and compare in-vivo kinematics during loaded dynamic activities using BVX and MRI. BVX (60 FPS) was captured whilst three healthy volunteers performed three repeats of lunge, stair ascent and gait. MRI scans were performed (Magnetom 3T Prisma, Siemens). 3D bone models of the tibia and femur were segmented (Simpleware Scan IP, Synopsis). Bone poses were obtained by manually matching bone models to X-rays (DSX Suite, C-Motion Inc.). Mean range of motion (ROM) of the contact points on the medial and lateral tibial plateau were calculated using custom MATLAB code (MathWorks). Results were filtered using an adaptive low pass Butterworth filter (Frequency range: 5-29Hz). Gait and Stair ascent activities from one participant's data showed increased ROM for medial-lateral (ML) translation in the medial compartment but decreased ROM in anterior-posterior (AP) translation when comparing against the same translations on the
Aims. Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. Methods. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay. Results. At mean six years’ follow-up, the PE wear rate was 0.08 mm/year (95% confidence interval 0.06 to 0.09 mm/year). PE inlay external rotation was below the precision limit and did not influence PE wear. Varus knee alignment did not influence PE wear (p = 0.874), but increased tibial component total translation (p = 0.041). Conclusion. The PE inlay was well fixed and there was no relationship between PE stability and PE wear. The PE wear rate was low and similar in the medial and
Contemporary indications for unicompartmental knee replacement (UKR) include bone on bone radiographic changes in the medial compartment with relatively preserved lateral and patellofemoral compartments. The role of MRI in identifying candidates for UKR is commonplace. The aim of this study was to assess the relationship between radiographic and MRI pre-operative grade and outcome following UKR. A retrospective analysis of medial UKR patients from 2017 to 2021. Inclusion criteria were medial UKR for osteoarthritis with pre-operative and post-operative Oxford Knee Scores (OKS), pre-operative radiographs and MRI. 89 patients were included. Whilst all patients had grade 4 ICRS scores on MRI, 36/89 patients had grade 3 KL radiographic scores in the medial compartment, 50/89 had grade 4 KL scores on the medial compartment. Grade 3 KL with grade 4 IRCS medial compartment patients had a mean OKS change of 17.22 (Sd 9.190) meanwhile Grade 4 KL had a mean change of 17.54 (SD 9.001), with no statistical difference in the OKS change score following UKR between these two groups (p=0.873). Medial bone oedema was present in all but one patient. Whilst
Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the
Abstract. INTRODUCTION. A paucity of literature exists regarding efficacy of lateral unloader bracing in treatment for pathologies effecting the
Purpose. The purpose of this study was to elucidate kinematic change according to the implant's specific femoral rotation by using orthosensor (Verasense) implant with three degrees external rotation of femoral rotation rebuilt (Genesis-II) and traditional TKA implant without rebuilt of the femoral rotation (Anthem). Methods. Twenty-eight patients (34 knees) underwent TKA using Anthem (Smith & Nephew, Memphis, TN, USA) and 16 patients (22 knees) underwent TKA using Genesis-II (Smith & Nephew, Memphis, TN, USA). Patients were followed up for at least 1 year. Mean age of patients was 71.1 years (range, 60 to 80 years) at the time of surgery. After implantation of femur and tibial components, we applied Verasense, the orthosensor system, to evaluate femoral rollback of the new artificial joint. Femoral rollback was analyzed using digitized screenshot function of Verasense. Results. Overall femoral tracking proportion regardless of implants was significantly higher on the medial compartment compared to that on the
Aims. Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and
Intro/Purpose. Lateral partial knee replacement is indicated as an alternative to total knee replacement for isolated end stage
Objectives. The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Methods. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed. Results. Overall, 1717 joint poses were analyzed. At a 1.0 mm detection threshold, 37 instances of surface separation were observed in the
Purpose. The purpose of the present study was to evaluate the intercompartmental loads with a sensor placed on implants after conventional gap balancing during total knee arthroplasty (TKA) with a tensiometer. Methods. Fifty sensor-assisted TKA procedures were performed prospectively between August and September 2018 with a cruciate-retaining prosthesis. After applying a modified measured technique, conventional balancing between the resected surfaces was achieved. The equal and rectangular flexion–extension gaps were confirmed using a tensiometer. Then, the load distribution was evaluated with a sensor. Results. The average load of the medial compartment was greater than that of the