Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 183 - 183
1 May 2011
Nevelos J Bhimji S Dong N Macintyre J Coustance A Streicher R
Full Access

It is accepted that larger diameter heads are more difficult to dislocate due to the increased distance the head has to travel to come out of the cup. Currently larger femoral heads are being used for their resistance to dislocation however, there remains little reporting on the effect of design of cup on jump distance. Monoblock metal on metal cups, which were designed for hip resurfacing are typically less than a hemisphere internally in order to increase the range of motion (ROM) needed when the femoral neck is retained. This does however also reduce the jump distance. We investigated several designs of cup with a variety of head sizes in order to compare ROM using a computer range of motion tool and a two dimensional jump distance with the cup at 45 degrees inclination. Jump distances were calculated for: Internally hemispheric cups in 28, 32 and 36mm bearing diameters; 28, 40 and 44mm polyethylene liners which were hemispheric but with an additional 2mm cylinder and a 0.7mm chamfer at the equator (Trident, Stryker, Mahwah, USA); 38, 48 and 54mm monoblock metal on metal resurfacing cups with a 3.5mm offset (BHR, Smith and Nephew, Memphis, USA); 40, 48, 58 dual mobility cups with an anatomic rim (Restoration ADM, Stryker, Mahwah, USA). Range of motion modeling was carried out using custom-written software according to a previously published method2 with 5 degrees of pelvic tilt and a standard femoral component. For the present study, range of motion was assessed on a standard stem with a 132° neck angle. Inclination of the cup was set to 45° and anteversion to 20°. For each implant tested, the total ROM was computed in flexion/extension, ab/adduction, and int/external rotation. Components tested for range of motion were: Trident 32, 36, 40 and 44mm Internal Diameter; Hemispheric 28 and 32mm Internal Diameter cups; MITCH TRH MoM Monoblock Resurfacing Cup (Stryker EMEA, Montreux, Switzerland) 46mm cup bearing diameter with a 2.75mm offset bore; Dual Mobility 40, 46 and 58mm cups. The metal on metal monoblock cups had a very high range of motion but a 48mm head has only a similar jump distance to a hemispheric 36mm design. The designs with the cylinder and chamfer have a markedly higher jump distance than their hemispheric equivalents but slightly reduced ROM. Interestingly, the dual mobility design has almost double the jump distance of an equivalently sized metal on metal resurfacing type cup and a higher jump distance than an equivalent head size in a conventional unipolar design. The dual mobility design has similar ROM to a 40mm head in the hemisphere with cylinder and chamfer design. ROM is slightly higher in the hemispheric and sub-hemispheric designs but this model does not take into account bony or soft tissue impingement. The role of design of ace-tabular component has a great effect on the range of motion and jump distance of bearings


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 98 - 98
2 Jan 2024
Mehta S Goel A Mahajan U Reddy N Bhaskar D
Full Access

Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty. Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence. Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision. 564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6-8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05). DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 1 - 1
17 Nov 2023
Mehta S Goel A Mahajan U Reddy R Bhaskar D
Full Access

Abstract. Introduction. Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty. Aims. Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence. Methods. Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision. Results. 564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6–8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05). Conclusion. DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 21 - 21
17 Nov 2023
Matar H van Duren B Berber R Bloch B James P Manktelow A
Full Access

Abstract. Objectives. Total hip replacement (THR) is one of the most successful and cost-effective interventions in orthopaedic surgery. Dislocation is a debilitating complication of THR and managing an unstable THR constitutes a significant clinical challenge. Stability in THR is multifactorial and is influenced by surgical, patient and implant related factors. It is established that larger diameter femoral heads have a wider impingement-free range of movement and an increase in jump distance, both of which are relevant in reducing the risk of dislocation. However, they can generate higher frictional torque which has led to concerns related to increased wear and loosening. Furthermore, the potential for taper corrosion or trunnionosis is also a potential concern with larger femoral heads, particularly those made from cobalt-chrome. These concerns have meant there is hesitancy among surgeons to use larger sized heads. This study presents the comparison of clinical outcomes for different head sizes (28mm, 32mm and 36mm) in primary THR for 10,104 hips in a single centre. Methods. A retrospective study of all consecutive patients who underwent primary THR at our institution between 1st April 2003 and 31st Dec 2019 was undertaken. Institutional approval for this study was obtained. Demographic and surgical data were collected. The primary outcome measures were all-cause revision, revision for dislocation, and all-cause revision excluding dislocation. Continuous descriptive statistics used means, median values, ranges, and 95% confidence intervals where appropriate. Kaplan-Meier survival curves were used to estimate time to revision. Cox proportional hazard regression analysis was used to compare revision rates between the femoral head size groups. Adjustments were made for age at surgery, gender, primary diagnosis, ASA score, articulation type, and fixation method. Results. 10,104 primary THRs were included; median age 68.6 years with 61.5% females. A posterior approach was performed in 71.6%. There were 3,295 hips with 28 mm heads (32.6%), 4,858 (48.1%) with 32 mm heads and 1,951 (19.3%) with 36 mm heads. Overall rate of revision was 1.7% with the lowest rate recorded for the 36mm group (2.7% vs. 1.3% vs. 1.1%). Cox regression analysis showed a decreased risk of all-cause revision for 32mm & 36mm head sizes as compared to 28mm; this was statistically significant for the 32mm group (p = 0.01). Risk of revision for dislocation was significantly reduced in both 32mm (p = 0.03) and 36mm (p = 0.03) head sizes. Analysis of all cause revision excluding dislocation showed no significant differences between head sizes. Conclusion. There was a significantly reduced risk of revision for all causes, but particularly revision for dislocation with larger head sizes (36mm & 32mm vs. 28mm). Concerns regarding increased risk of early revision for aseptic loosening, polyethylene wear or taper corrosion with larger heads appear to be unfounded in this cohort of 10,104 patients with a mean of 6.0-year follow-up. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 408 - 408
1 Dec 2013
Varadarajan KM Duffy M Zumbrunn T Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

Introduction:. Large diameter femoral heads have been used successfully to prevent dislocation after Total Hip Arthroplasty (THA). However, recent studies show that the peripheral region of contemporary femoral heads can directly impinge against the native soft-tissues, particularly the iliopsoas, leading to activity limiting anterior hip pain. This is because the spherical articular surface of contemporary prosthesis overhangs beyond that of the native anatomy (Fig. 1). The goal of this research was to develop an anatomically shaped, soft-tissue friendly large diameter femoral head that retains the benefits of contemporary implants. Methods:. Various Anatomically Contoured femoral Head (ACH) designs were constructed, wherein the articular surface extending from the pole to a theta (θ) angle, matched that of contemporary implants (Fig. 2). However, the articular surface in the peripheral region was moved inward towards the femoral head center, thereby reducing material that could impinge on the soft-tissues (Fig. 1 and Fig. 2). Finite element analysis was used to determine the femoroacetabular contact area under peak in vivo loads during different activities. Dynamic simulations were used to determine jump distance prior to posterior dislocation under different dislocation modes. Published data was used to compare the implant articular geometry to native anatomy (Fig. 3). These analyses were used to optimize the soft-tissue relief, while retaining the load bearing contact area, and the dislocation resistance of conventional implants. Results:. The resulting ACH prosthesis retained the large diameter profile of contemporary implants over an approximately hemispherical portion (Fig. 2). Beyond this, the peripheral articular surface was composed of smaller convex radii. With this design, the jump distance under posterior and anterior dislocation modes, and the femoroacetabular contact area under loads corresponding to walking, deep knee bend and chair sit, remained identical to that of contemporary implants. Additionally, while contemporary prosthesis extended beyond the native articular surface in the distal-medial and proximal-lateral regions (shaded grey), the ACH implant remained within the margins of the native anatomy (Fig. 3). Conclusion:. A novel large diameter anatomically contoured femoral head prosthesis was developed, to mitigate the soft-tissue impingement with contemporary prosthesis. The ACH retained the large diameter profile of contemporary implants over a hemispherical portion. However, in the peripheral region, the ACH had a smaller profile to reduce soft-tissue impingement


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 605 - 605
1 Dec 2013
Zumbrunn T Varadarajan KM Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

INTRODUCTION. Femoral head diameter has a major influence on stability and dislocation resistance of the hip joint after Total Hip Arthroplasty (THA). Dual Mobility (DM) implants can also reduce the risk of dislocation due the large diameter mobile liner which forms the femoroacetbular articulation. However, recent studies have shown that large head prostheses can directly impinge against native soft tissues, particularly the iliopsoas, leading to anterior hip pain. Dual mobility systems have emerged as a revision option in the treatment of failed metal on metal devices because of the high incidence of post revision instability secondary to abductor loss and need for capsulectomy. We hypothesized that an Anatomically Contoured Dual Mobility (ACDM) liner could provide joint stability while better accommodating the soft tissues surrounding the hip joint. METHODS. The dislocation resistance of a 44 mm ACDM implant was compared to that of a 44 mm conventional DM liner. Both implants consisted of a 28 mm inner small diameter head and the liner was abducted to be in the worst case position for dislocation (Fig. 1). The ACDM liner was based on a 44 mm sphere with smaller radii used to contour the peripheral region below the equator of the liner. MSC Adams was used for dynamic simulations based on two previously described dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal rotation of the hip and a posterosuperior directed joint force; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction and a posteromedial force direction (Fig. 2). Impingement-free motion (motion without neck impingement against the acetabular cup) and jump distance (head separation from acetabulum at dislocation) were measured for each implant. The acetabular cup was placed at 42.5° abduction and 19.7° anteversion, while the femoral component was anteverted by 9.75° based on published data. RESULTS. The results showed no differences between the novel anatomically contoured 44 mm liner (ACDM) and a conventional 44 mm DM implant for both dislocation modes. The 44 mm ACDM and conventional DM liner showed impingement-free motion of 47° for mode A and 29° for mode B which are much higher compared to the contemporary small heads. The jump distance between the 44 mm ACDM and the conventional liner was also identical (Fig. 3). CONCLUSION. The novel Anatomically Contoured Dual Mobility (ACDM) liner matched the dislocation resistance of a conventional DM liner of the same size. This confirmed the hypothesis that dual mobility liners can be anatomically shaped to alleviate the risk of soft tissue impingement, without jeopardizing stability


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 606 - 606
1 Dec 2013
Zumbrunn T Varadarajan KM Duffy M Rubash HE Malchau H Freiberg A Muratoglu O
Full Access

INTRODUCTION. Femoral head diameter has a major influence on stability and dislocation resistance after Total Hip Arthroplasty (THA). Although routine use of large heads is common, several recent studies have shown that contemporary large head prostheses can directly impinge against native soft tissues, particularly the iliopsoas which wraps around the femoral head, leading to refractory anterior hip pain. To address this, we developed a novel Anatomically Contoured large diameter femoral Head (ACH). We hypothesized that anatomical contouring of the ACH implant for soft tissue relief would not compromise dislocation resistance, and the ACH implant would provide increased stability compared to small heads. METHODS. In this study the dislocation resistance of a 36 mm ACH was compared to that of 28 mm and 36 mm contemporary heads. The ACH implant was based on a 36 mm sphere with smaller radii used to contour the peripheral region below the equator of the head. MSC Adams was used for dynamic simulations based on two previously described dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal rotation of the hip and a posterosuperior directed joint force; (B) posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction and a posteromedial force direction (Fig. 1). Impingement-free motion (motion without neck impingement against the acetabular liner) and jump distance (head separation from acetabulum prior to dislocation) were measured to evaluate the dislocation risk of each implant. The acetabular cup was placed at 42.5° abduction and 19.7° anteversion, while the femoral component was anteverted by 9.75° based on published data. RESULTS. The results showed no differences between the novel anatomically contoured 36 mm head and a conventional 36 mm head for both dislocation modes. The 36 mm ACH and conventional head showed greater impingement-free motion compared to the 28 mm conventional head, with an increase of 7° for dislocation mode A, and 4° for mode B. Relative to the 28 mm head, the jump distance for the 36 mm ACH and the 36 mm conventional head increased by 1.5 mm for dislocation mode A, and 2 mm for mode B (Fig. 2 and Fig. 3). CONCLUSION. The novel Anatomically Contoured large diameter femoral Head (ACH) showed increased dislocation resistance compared to a conventional small diameter head and matched the stability of a conventional large head of the same size. This confirmed the hypothesis that large femoral heads can be anatomically shaped to alleviate the risk of soft-tissue impingement, as in the ACH implant, without jeopardizing the desired stability


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 86 - 86
1 May 2019
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility will be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. At least one center reports that dual mobility outperforms 40mm femoral heads in revision arthroplasty. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation, revision of failed metal-on-metal resurfacing or total hips, unipolar arthroplasties, and salvage of failed constrained liners. There are concerns of elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. Total hip surgeons no longer use conventional polyethylene, autologous blood donation, or a hemovac drain; now constrained components join these obsolete techniques! In 2018, a dual mobility component, rather than a constrained liner, is the preferred solution in revision surgery to prevent and manage recurrent dislocation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 90 - 90
1 Feb 2020
Haeussler K Pandorf T
Full Access

Introduction. Lipped liners have the potential to decrease the rate of revision for instability after total hip replacement since they increase the jumping distance in the direction of the lip. However, the elevated lip also may reduce the Range of Motion and may lead to early impingement of the femoral stem on the liner. It is unclear whether the use of a lipped liner has an impact on the level of lever-out moments or the contact stresses. Therefore, the aim of the current study was to calculate these values for lipped liners and compare these results to a conventional liner geometry. Materials and Methods. 3D Finite Element studies were conducted comparing a ceramic lipped liner prototype and a ceramic conventional liner both made from BIOLOX. ®. delta. The bearing diameter was 36 mm. To apply loading, a test taper made of titanium alloy was bonded to a femoral head, also made from BIOLOX. ®. delta. Titanium was modeled with a bilinear isotropic hardening law. For the bearing contact a coefficient of friction of both 0.09 or 0.3 was assumed to model a well and poorly lubricated system. Frictionless contact was modeled between taper and liner. Pre-load was varied between 500 N and 1500 N and applied along the taper axis. While keeping pre-load constant, lever-out force was applied perpendicular to the taper axis until subluxation occurred. Liners were fixed at the taper region. Lever-out moment, equivalent plastic strain and von Mises stress of the taper, bearing contact area and contact area between taper and liner was evaluated. Results. With increasing pre-load, larger lever-out moment, equivalent plastic strain, contact area between taper and liner and bearing contact area was found for both liner designs. However, von Mises stresses were nearly constant but slightly exceeded yield strength of titanium. For all evaluated parameters almost no differences were found between the liner designs. Lever-out moments were comparable for both designs ranging from 4.5–10.5 Nm for the lipped liner and 4.4–10.2 Nm for the conventional liner. The increase of the coefficient of friction strongly affected lever-out moments, equivalent plastic strain and contact area between taper and liner. The other parameters were not affected by varying the coefficient of friction. Discussion. This study did not find significant differences in the lever-out behavior of the lipped acetabular liner compared to the conventional liner design. The inner geometry of the lipped liner is comparable to the conventional liner inner geometry. Therefore, contact area showed no significant differences and contact mechanics are identical in the current setup leading to similar results of both liner designs. For both designs small plastic deformations in the contact point of the taper were found at the contact region between liner and taper. However, the investigated mechanical parameters did not differ between the two investigated liner types. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 25 - 25
1 Jun 2018
Della Valle C
Full Access

Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip arthroplasties in the United States. We have advocated identifying the primary cause of instability to plan appropriate treatment (Wera, Della Valle, et al., JOA 2012). Once implant position, leg length, and offset have been optimised and sources of impingement have been removed, the surgeon can opt for a large femoral head, a dual mobility articulation or a constrained liner. Given the limitations of constrained liners, we have looked to dual mobility articulations as an alternative, including its use in patients with abductor deficiency. We retrospectively compared a consecutive series of revision THA that were at high risk for instability and treated with either a constrained liner or a dual mobility articulation. At a minimum of two years, there were ten dislocations in the constrained group (10/43 or 23.3%) compared to three in the dual-mobility group (3/36 or 8.3%; p = 0.06). With repeat revision for instability as an endpoint, the failure rate was 23% for the constrained group and 5.5% for the dual mobility group (p = 0.03). We have also performed a systematic review of the published literature on the use of dual mobility in revision THA. Of the 3,088 hips reviewed, the dislocation rate was 2.2%, the risk of intraprosthetic dislocation was 0.3% and overall survivorship was 96.6% at 5 years. Dual mobility articulations offer anatomic sized femoral heads that greatly increase jump distance, without many of the negatives of a constrained liner. While dual mobility is associated with its own concerns and problems (including intraprosthetic dislocation and wear) our initial results suggest that they are a viable alternative to a constrained liner, even in the most challenging situations


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 81 - 81
1 Aug 2017
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility will be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. At least one center reports that dual mobility outperforms 40mm femoral heads in revision arthroplasty. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation, revision of failed metal-metal resurfacing, total hips, unipolar arthroplasties, and salvage of failed constrained liners. There are concerns of elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. Total hip surgeons no longer cement Charnley acetabular components, use conventional polyethylene, autologous blood donation, or a drain; now constrained components join these obsolete techniques! In 2017, a dual mobility component, rather than a constrained liner, is the preferred solution in revision surgery to prevent and manage recurrent dislocation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 45 - 45
1 Dec 2016
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal head is snap-fit into the large polyethylene. The first such device was introduced for primary total hip arthroplasty by Bousquet in the 1970s, thus, the “French connection”. Dual mobility components have been released for use in North America over the past five years. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series and the Swedish hip registry have shown satisfactory results for this indication at short- to medium-term follow-up times. However, there are important concerns with polyethylene wear, late intraprosthetic dislocation, and the lack of long-term follow-up data. These components are an important option in the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, and salvage of failed constrained liners. There are more recent concerns of possible iliopsoas tendinitis, elevated metal levels with one design, and acute early intraprosthetic dislocation following attempted closed reduction. However, a dual mobility component may now be the preferred solution in revision surgery for recurrent hip dislocation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 81 - 81
1 Nov 2016
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. New components have been released for use in North America over the past eight years and additional modular designs will be forthcoming. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. However, at least one center reported failure of dual mobility if the abductor mechanism is absent. There are important concerns with dual mobility, including late polyethylene wear causing intra-prosthetic dislocation, and the lack of long-term follow-up data with most designs. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, total hips, large head unipolar arthroplasties, and salvage of failed constrained liners. There are more recent concerns of iliopsoas tendonitis, elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. However, in 2016, a dual mobility component, rather than a constrained liner, may be the preferred solution in revision surgery to prevent and manage recurrent dislocation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 48 - 48
1 May 2014
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal head is snap-fit into the large polyethylene. New components have been released for use in North America over the past three years. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to manage recurrent dislocation in the setting of revision total hip arthroplasty. Several small retrospective series have shown satisfactory results for this indication at short- to medium-term follow-up times. However, there are important concerns with polyethylene wear, late intra-prosthetic dislocation, and the lack of long-term follow-up data. These components are an important option in the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, and salvage of failed constrained liners. Until further long-term results are available, caution is advised in the routine use of dual mobility components in primary or revision total hip arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 45 - 45
1 Apr 2017
Haddad F
Full Access

Treatment of recurrent dislocation: approximately: 1/3 of failures (probably higher in the absence of a clear curable cause). In the US: most popular treatment option: constrained liners with high redislocation and loosening rates in most reports. Several interfaces leading to various modes of failures. In Europe: dual mobility cups (or tripolar unconstrained): first design Gilles Bousquet 1976 (Saint Etienne, France), consisting of a metal shell with a highly polished inner surface articulating with a mobile polyethylene insert (large articulation). The femoral head is captured into the polyethylene (small articulation) using a snap fit type mechanism leading to a large effective unconstrained head inside the metal cup. With dual mobility, most of the movements occur in the small articulation therefore limiting wear from the large polyethylene on metal articulation. Contemporary designs include: CoCr metal cup for improved friction, outer shell coated with titanium and hydroxyapatite, possible use of screws to enhance primary stability (revision), cemented version in case of major bone defect requiring bone reconstruction. Increased stability obtained through an ultra-large diameter effective femoral head increasing the jumping distance. Dual mobility in revision for recurrent dislocation provided hip stability in more than 94% of the cases with less than 3% presenting redislocation up to 13-year follow-up. A series from the UK concerning 115 revisions including 29 revisions for recurrent dislocation reported 2% dislocation in the global series and 7% re-dislocation in patients revised for instability. A recent report of the Swedish hip arthroplasty register including 228 patients revised for recurrent dislocation showed 99% survival with revision for dislocation as the endpoint and 93% with revision for any reason as the endpoint. One specific complication of dual mobility sockets: intra-prosthetic dislocation (ie: dislocation at the small articulation): often asymptomatic or slight discomfort, eccentration of the neck on AP radiograph, related to wear and fatigue of the polyethylene rim at the capturing are through aggressive stem neck to mobile polyethylene insert contact (3rd articulation). Risk factors include: large and aggressive femoral neck design implants, small head/neck ratio, skirted heads, major fibrosis and periprosthetic ossifications. Current (over ?) use in France: 30% of primary THA, 60% in revision THA. Proposed (reasonable) indications: primary THA at high risk for dislocation, revision THA for instability and/or in case of abductors deficiency, Undisputed indication: recurrent dislocation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 4 - 4
1 Feb 2015
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal head is snap-fit into the large polyethylene. New components have been released for use in North America over the past four years. In some European centers, these components are routinely used for primary total hip arthroplasty. Some surgeons in USA suggest routine use in primary hip arthroplasty. However, their greatest utility is to manage recurrent dislocation in the setting of revision total hip arthroplasty. Recent biomechanical data suggests that, in a 3D CT scan-cadaver hip model, there is no difference in range of motion between a 36mm head and an ADM dual mobility component sizes 50–56mm. There is little wear data on dual mobility components, except from one implant manufacturer. It is feared that there is a “3rd articulation” in dual mobility components—the routine impingement of the femoral neck against the polyethylene femoral head. Several retrospective series have shown satisfactory results for these dual mobility components at short- to medium-term follow-up times. There are important concerns with polyethylene wear, late intra-prosthetic dislocation, and the lack of long-term follow-up data. Big femoral heads (36mm and 40mm) articulating with highly cross-linked, e-beam, remelted, polyethylene are a better choice in primary total hip arthroplasty, to decrease the frequency of dislocation in “high risk” patients. Although the risk of early dislocation was 4% in “high risk” patients, there was no recurrence, no revision, and no late first dislocation. Until further long-term results are available, caution is advised in the routine use of dual mobility components in primary total hip arthroplasty


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 60 - 60
1 Feb 2015
Hozack W
Full Access

Dual mobility (DM) cups have 2 points of articulation – between the shell and the polyethylene (external bearing) and between the polyethylene and the femoral head (internal bearing). Primary motion occurs at the inner bearing while the outer bearing moves only in cases of extreme range of motion. Dislocation is a top reason for revision surgery and a major cost burden on society. Instability is also a significant problem after revision THA. While a variety of factors are important in hip stability, DM cups provide the safety of larger femoral heads in virtually all patients. These larger heads increase jump distance (the distance the femoral must travel before dislocation occurs) and they also increase ROM before impingement occurs. ROM and impingement are competing with each in primary THA. Especially in the flexible female with small bone structure, their increased ROM significantly increases the risk of impingement during physiologic activities. While not necessarily leading to dislocation, subluxation can occur resulting in pain. Further, ongoing impingement reduces the longevity of the PE. The ability to increase head size and head-neck ration with the DM cups in these patients is both an immediate and long-term advantage. PE thickness still can compromise the integrity of the liner. DM cups have thicker PE, especially in the smaller size cups than standard PE inserts. Even with the dual articulation, PE wear in DM cups are less, or at worst, equivalent to standard cups while at the same time providing adequate PE thickness for PE integrity and longevity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 43 - 43
1 Jan 2016
Hirayama T Sasaki K Takakubo Y Ito J Takagi M
Full Access

Background. Large head metal on metal total hip arthroplasty MOM THA have been consistently shown substantial improvement in wear performance compared with metal on polyethylene articulations. Large diameter femoral heads theoretically can reduce dislocation risk by increasing range of motion before impingement, increasing prosthetic jump distance. However, early failure associated with adverse local tissue reactions (ALTRs) to metal debris is an emerging problem after MOM THA. The purpose of this study was to evaluate mid-term results of MOM THA. Materials and Methods. Twenty-five patients, 28 hips were included in this study. The average age of the patients at the time of surgery was 66.9 years. Three patients were men and 22 were women. MOM THAs were performed using 28 PINNACLE Cup system (DepPuy) (C-STEM: 23, S-ROM: 5) with posterior approach and head size of 36mm. Twenty-five primary THAs due to osteoarthritis in 22 cases and rheumatoid arthritis (RA) in one, and two revisions due to recurrent dislocation THA patients, were performed. The average follow up was 56.7 months. Evaluation items are JOA score, cup anteversion /lateral opening angle, and complications. Indication of the system were applied for patients with high risk of dislocation such as recurrent dislocation in primary and/or THAs, posterior pelvic tilt, elderly, RA and mental disorders. Results. The average JOA score improved from 48.3 (range: 26–77) preoperatively to 88.3 (range: 55–100) postoperatively. The average cup anteversion was 21.7 degrees (range: 2–38) and average lateral opening was 45.5 degrees (range: 37–60). Three patients (12%) developed dislocation. Two patients (8%) required reoperations from the deep infection. One female patient (4%) remained hip pain and was suspected pseudotumor / ALTR, which was confirmed by computed tomography and magnetic resonance imaging. Conclusion. Large femoral head MOM THA was useful for patients with recurrent dislocation in revision THA. However, three patients developed dislocation in primary THAs (12% of primary cases), which suggested that the more accurate placement of the acetabular cup is important even in the large diameter cup. Although only one case (4%) revealed ALTR, however, continuous careful follow-up would be necessary in the MOM system


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 97 - 97
1 Mar 2017
Widmer K
Full Access

Introduction. Lewinnek's Safe-Zone gives recommendations only for cup placement in total hip arthroplasty while the orientation of the neck isn't considered. Furthermore the criteria for cup placement are not clearly defined and the ranges for cup orientation are considerably large. This study introduces new recommandations for the combined placement of both total hip components, when both, cup and stem, are considered. This defines the new dynamic combined safe-zone (cSafe-Zone) which gives clear directions for the optimal combined orientation of both components in order to maximize the intended range of movement (iROM) while reducing the risk for prosthetic impingement and dislocation. Material and Methods. The combined safe-zone outlines the area that encloses all component orientations that achieve the predefined iROM without prosthetic impingement. A computerized 3D-model of a total hip prosthesis was established that does systematically test all design parameters semi-automatically in order to identify those component positions that fulfill the predefined conditions. The analysis was carried out for straight stems, anatomic stems and short stems. The iROM is composed of basic movements like flexion/extension, internal/external rotation, ab/adduction and combination of these movements that the patient should reach and that are commonly accepted as physiologic hip movements. The orientation of the cup was varied between 20° and 70° of inclination and −10° of retro- to 40° anteversion. Stem antetorsion was tested from −10° retro- to 40°-antetorsion and CCD-angle from 110° to 150°. Head-size and head/neck ratio were additional parameters. Results. The new combined safe-zone has a dynamic location and has a polygonal outer boundary. It is smaller than Lewinnek's safe-zone. Its size and location within the cup inclination/anteversion diagram depends on the antetorsion and the CCD-angle of the stem. It can be demonstrated that a low-anteverted stem should be combined with a high-anteverted cup and vice versa, i.e. cup anteversion and stem antetorsion are linearly but inversely correlated. This is true for a straight stem as well as for anatomic and for short stems. The size of the cSafe-Zone is largest when the socket is radiographically anteverted between 20° and 25°. The neck/shaft-angle (CCD-angle) and the anatomic design do have a high impact on the preferred antetorsion of the stem. A straight 130°-CCD-stem is best implanted in about 15°+/−4degree of antetorsion while an anatomic 127°-CCD-stem can be implanted in a lower degree of antetorsion. Increasing the head/neck ratio increases the cSafe-Zone too and gives room for a lower cup inclination which increases the jumping distance. The optimal CCD-angle of a straight stem is 127°+/−3 degree. Conclusion. The new combined safe-zone (cSafe-zone) gives well-defined recommendations for cup and stem placement taking into account the dynamic interrelationship between cup and stem. In extending Lewinnek's recommendations it defines how both the cup and the stem should be oriented relative to each other and how the component's orientations are optimized in order to achieve the highest safety against prosthetic impingement while reaching the highest range of movement which is especially important for high-performance materials and in young and active patients