header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives

The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management.

Methods

A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”.


Summary Statement. The present study demonstrates the beneficial effects of strontium (Sr) modified calcium phosphate cement to improve new bone formation in a metaphyseal osteoporotic fracture defects in rats compared to calcium phosphate cement and empty defects. Keywords: strontium, fracture, calcium phosphate, bone formation. Introduction. Impaired fracture healing with subsequent implant failure is a dramatic problem in osteoporotic fractures. Biomaterials are of interest to stimulate fracture healing in osteoporotic defects and the objective of the current study is to investigate the effects of Strontium modified calcium phosphate cement (SrCPC) in a critical-size metaphyseal fracture defect of osteoporotic rats compared to calcium phosphate (CPC) and empty defect control group. Methods. 45 female Sprague-Dawley rats were randomized into 3 groups: SrCPC, CPC and empty defect (n=15 for each). A combinatorial approach of multi-deficiency diet for 3 months after bilateral ovariectomy was used for induction of osteoporosis. Left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with CPC or SrCPC and internally stabilised with a T shaped mini-plate. Empty defect served as a control. After 6 weeks femora were harvested followed by histological, histomorphometrical, immunohistochemical (bone-morphogenic protein 2, osteocalcin and osteoprotegerin), and molecular biology analysis (alkaline phosphatase, collagen10a1 and osteocalcin) to demonstrate the effects of the biomaterials on new bone formation. Time of flight secondary ion mass spectrometry (TOF-SIMS) technology was used to assess the distribution of released strontium ions and calcium appearance of newly formed bone. Results. Histomorphometric analysis showed a statistically significant increase in the bone formation at the tissue-implant interface in the SrCPC group (p<0.001). A statistically significantly more cartilage and unmineralised bone formation was also seen in the SrCPC group in comparision to the CPC group alone (p<0.05) and also to the empty defect (p<0.05) in the former fracture defect zone. These data were confirmed by the immunohistochemistry results which revealed an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin and an increase in expression of genes responsible for bone formation viz. alkaline phosphatase, collagen10a1 and osteocalcin. TOF-SIMs analysis showed a higher release of Sr from the SrCPC into the interface region and related to a higher calcium content in this area compared to CPC. Discussion/Conclusion. SrCPC treatment showed enhanced new bone formation in a metaphyseal osteoporotic fracture defect of rats after 6 weeks compared to CPC-filled and empty defects in histomorphometry, immunochemistry and gene expression analysis. Strontium ranelate is a well-known anti-osteoporotic drug increasing bone formation and reducing bone resorption. As revealed by TOF-SIMS release of Sr out of the the SrCPC cement is most likely attributable for new bone formation. Therefore, Sr seems to be a good candidate not only for systemic treatment in osteoporosis but also in Sr-modification of biomaterials for local stimulation of new bone formation in osteoporotic fracture defects


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 207 - 207
1 Jul 2014
He B Liu J Tang T Guo B Pan X Lu A Zhang G
Full Access

Summary. We compare the difference in expression profiles of miRNAs during fracture healing between adult and aged female mice. This study reveals the possibility to improve impaired fracture healing in aged females by regulating key miRNAs at early stage. Introduction. Impaired fracture healing in aged female skeleton is still a clinical challenge (Holroyd et al., Best Pract Res Clin Endocrinol Metab, 2008, Virk, Lieberman, Arthritis Res Ther, 2012). Angiogenesis and osteogenesis are the two key stages during fracture healing, which are impaired in aged female (Naik et al., J Bone Miner Res, 2009). MicroRNAs (miRNAs) are key post-transcriptional non-coding regulators of gene expression, which has demonstrated important roles in angiogenesis and osteogenesis (Bae et al., Hum Mol Genet, 2012, Plummer et al., Cancer Res, 2013). Understanding how non-coding regulatory RNA in fracture healing changes with age will help identifying novel therapeutic targets that can be exploited to improve fracture healing in the aged females. Materials and methods. Bilateral femur transverse fractures were created in 9 female 12-month-old mice (Aged Group) and 9 female 12-week-old mice (Adult Group). Three mice in each group were sacrificed at 0, 2 and 4 weeks post fracture, respectively. Total RNA was extracted and hybridised on Agilent 8×60K Mouse miRNA Microarray. Then, differentially expressed miRNAs were identified in adult and aged female fracture mice, respectively (2-vs-0 weeks, 4-vs-0 weeks, P-value <= 0.05 & Fold change >=2.0). With the experimentally validated interactions among miRNAs and their targets, we constructed fracture-healing-related molecular network. Thereafter, we performed topological and dynamic network analysis to find key hub miRNAs in female fracture healing. Person correlation coefficient (r) analysis was performed on the expression data of the miRNAs in all the 18 mice to identify co-expression modules in the female fracture healing progress. Meanwhile, in order to analyze the angiogenesis in the early stage and osteogenesis in the later stage of female fracture healing, we performed microCT-based angiography at 2 weeks post fracture and micro-CT examination at 4 weeks post fracture on the right femur callus samples. Results & Discussion. Angiography showed smaller blood vessel volume in aged mice at early stage when compared to that in the adult mice. Reconstructed calluses showed lower bridging mineralization tissues within the gap in aged mice than that in the adult mice at the later stage. We found that the top hub miRNAs were differentially expressed in adult female mice but not in aged ones during fracture healing. Moreover, the differential expression of the top hub miRNAs was only observed at early stage (2 weeks) during fracture healing in adult female mice. This may help explain the difference of fracture healing between adult and aged female mice. It also indicated the molecular events controlled by the hub miRNAs in early stage could lead to the following differences between the adult and aged female mice at 4 weeks. The person correlation coefficient analysis revealed that there were five co-expression miRNA modules (r>0.8) participated in female fracture healing. The top hub miRNAs in fracture-healing-related molecular network were all included in the two largest modules. These results implied the possibility to improve the aged female fracture healing by regulating key miRNAs at early stage


Bone & Joint Research
Vol. 10, Issue 1 | Pages 41 - 50
1 Jan 2021
Wong RMY Choy VMH Li J Li TK Chim YN Li MCM Cheng JCY Leung K Chow SK Cheung WH

Aims

Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing.

Methods

A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture.