Advertisement for orthosearch.org.uk
Results 1 - 20 of 237
Results per page:
Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 60 - 60
17 Nov 2023
Diaz RL Williams S Jimenez-Cruz D Board T
Full Access

Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip simulator. METHODS. Experimental design. HA tests were conducted using porcine acetabula and CoCr femoral heads. Five groups (n=4) were included: a control group comprising natural tissue and four HA groups where the acetabula were paired with metal heads to allow radial clearance (RC) classed as small (RC<0.6mm), large (2mm<RC<4mm), extra-large (4mm<RC), and oversized (RC<−0.6mm). Tests were carried out in an anatomical hip simulator that reproduced a simplified twin peak gait cycle, adapted for porcine hip joints, from the ISO 14242 standard for wear of THR prostheses (peak load of 900N). The test length was 6 hours, with photogrammetry taken at 1-hour intervals. Ringers solution was used as a lubricant. RESULTS. No changes were observed in the control group. However, cartilage surface changes were observed in all hemi-arthroplasty groups. Discolouration on the cartilage surface was noticeable at the posterior-superior part of the acetabulum after 1-hour (extra-large and oversized groups). Damage severity and location were characteristic of each clearance group. Of all the groups, the oversized group showed more significant damage. No labrum separation was seen after the simulation. CONCLUSIONS. These results are relevant to understand the effect of femoral head clearance on cartilage damage risk after HA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 239 - 239
1 Mar 2013
Lerf R Senaris J Delfosse D
Full Access

Introduction. Edge loading in acetabular hip implants is generally due to mal-orientation or low tissue tension. It is known that edge loading of metal-on-metal THA may lead to higher metal wear and ion release with corresponding adverse body reactions. The inclination angle of the acetabular cup has been positively correlated with the wear rate of explanted components . 1. However, no data published is known about wear rates of edge loaded hard – soft hip bearings. Methods. For the hip simulator study, seleXys cup inlays, size 28/EE, (Mathys Ltd Bettlach, Switzerland) were used. Standard PE parts and vitamys® inlays (highly cross-linked, vitamin E stabilised UHMWPE) were tested in the same run. PE inlays were machined out of sintered GUR 1020 slabs, packaged and gamma-sterilised in inert atmosphere at 30 kGy. The vitamys® material was made in-house by adding 0.1 wt.-% of vitamin E to GUR 1020 powder from Ticona GmbH, Kelsterbach/Germany. Cross-linking used 100 (±10) kGy gamma-irradiation and the final sterilisation was gas plasma. Cup inclination was varied: besides the protocol of ISO 14242-1 with an inclination angle corresponding to 45 ° in the medial-lateral plane, a steep cup position corresponding to 75 ° was tested, too. To our knowledge, this is the highest inclination angle ever tested in a hip simulator. The testing was conducted in a servo-hydraulic six-station hip simulator (Endolab, Thansau/Rosenheim, Germany) at a temperature of 37±1°C. Tests were run at the RMS Foundation (Bettlach / Switzerland) for five million cycles. The test fluid was based on bovine serum diluted to a protein concentration of 30 g/l and stabilised with sodium azide and EDTA. At lubricant change interval of 500,000 cycles, the inlays were measured gravimetrically with an accuracy of 0.01 mg. Results. The wear rate of the standard UHMWPE inlays tested with an inclination of 75° was 16% lower than those of the inlays with 45 ° inclination. For the vitamys® inlays, wear rates were about the same for both inclination angles (cf. Figure 1). After the test, the 75 ° inlays were polished tribologically on the caudal wall of the inlays while on the pole the tool-marks were still present (Figure 2, vitamys®). The polished surface of the 45 ° inclination samples was lager and covered about 2/3 of the articulation surface (vitamys®, Figure 3) or almost the whole articulation (standard PE). Hence, the hard – soft bearings tested showed no significant effect of inclination angle on the wear rate. This is true for a position as steep as 75 °, just before subluxation would occur. Conclusions. Based on the present hip simulator study, it seems that metal-on-polyethylene bearings are exempt of accelerated wear rate when subjected to edge loading conditions. Using the newest generation of HXLPE, stabilised with vitamin E, combines superior oxidation resistance . 2. , low wear and highest forgiveness for component mal-orientation


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 372 - 372
1 Jul 2008
Zant N Heaton-Adegbile P Tong J
Full Access

A new hip simulator has been developed at the University of Portsmouth and manufactured at Simulation Solutions, Ltd. (UK) for the purpose of fatigue testing of implanted acetabula. Although hip simulators for in vitro wear testing of prosthetic materials in total hip arthroplasty (THA) have been available for many years, similar equipment has yet to appear for endurance testing of fixations in cemented THA, despite of considerable evidence of late aseptic loosening as one of the most singnificant failure mechanisms in acetabular replacements . [1]. . In this study, a new four-station hip simulator designed for in vitro fatigue testing of implanted acetabula is described. The four-station machine has spacious test cells that can accommodate full hemi-pelvic bones with implants. The machine was designed to simulate the direction and the magnitude of the hip contact force relative to the acetabular cup coordinate system, as reported by Bergmann et al. . [2]. , under typical physiological loading conditions, including stair climbing as well as walking. The controls were designed as such that each station may operate independently with a loading waveform that is fully programmable. The motions were achieved through two encoded servomotors suitably connected to gearboxes; while the loading was realised through a close-looped pneumatic system. The motions and the resultant hip contact force of the new hip simulator were evaluated, and found to be satisfactory in reproducing the typical physiological loading waveforms including normal walking, ascending and descending stairs. Experiments have been carried out using third generation composite bones (Pacific Research Laboratories, Inc.) and bovine bones. Both hip simulator and conventional fatigue testing were carried out. The implanted acetabula were CT scanned periodically to monitor the damage development in the fixation. Preliminary results seem to suggest that both magnitude and direction of the hip contact force influence the integrity of the fixa-tion, and failures appear to occur earlier in samples tested using the hip simulator. The predominant failure mechanism appears to be interfacial fracture, consistent with clinical observation of radiolucent lines and bone-cement interfacial failure


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 199 - 199
1 Jul 2014
Lerf R Delfosse D
Full Access

Summary Statement. In the present hip simulator studies, bearings with the newest generation of HXLPE, stabilised with vitamin E, did not show increased wear under severe conditions, such as accelerated ageing, component mal-orientation and third body wear. Introduction. Unfortunately, acetabular hip components cannot always be implanted in optimal condition. Therefore, we performed hip simulator studies with cups made from highly cross-linked, vitamin E stabilised UHMWPE in i) artificially aged condition, ii) with an inclination angle corresponding to 80 ° in vivo and iii) with third bodies coming from the Ti coating of the acetabular cup. Methods. For these hip simulator studies, seleXys cup inlays, size 28/EE, and RM Pressfit samples 50/28 (Mathys Ltd Bettlach, Switzerland) were used. Standard PE parts and vitamys® inlays (highly cross-linked, vitamin E stabilised UHMWPE) were tested in the same series. PE cups were machined out of sintered GUR 1020 slabs, packaged and gamma-sterilised in inert atmosphere at 30 kGy. The vitamys® material was made in-house by adding 0.1 wt.-% of vitamin E (Merck KGaA, Darmstadt/Germany) to GUR 1020 powder from Ticona GmbH, Kelsterbach/Germany. Cross-linking used 100 kGy gamma-irradiation and the final sterilisation was gas plasma. Artificial ageing was done under pressurised oxygen at 70 °C according to ASTM F2003 for 14 days (standard PE) and 60 days (vitamys®), respectively. The hip simulator test protocol of ISO 14242 was kept for the artificially aged cups, but the inclination angle altered to 80 ° for the test with the steep cup position. In the third test, the test fluid (diluted bovine serum stabilised with sodium azide and EDTA) was altered by adding about 10 Ti particles to the bearing for the first million cycles. This test condition imitates third body wear by particles shed from the coating of the RM cups. All testing was conducted at the RMS Foundation (Bettlach / Switzerland) on a servo-hydraulic six-station hip simulator (Endolab, Thansau/Rosenheim, Germany) at a temperature of 37±1°C. At lubricant change interval of 500’000 cycles, the inlays were measured gravimetrically with an accuracy of 0.01 mg. Results. The wear rate of the standard UHMWPE in the condition aged for 14 days reached 45 mg/Mcycle, corresponding to a 57 % increase over non-aged cups. For the vitamys® cups, the wear rate was virtually unchanged even after 60 days ageing (5.8 mg/Mcycle vs. 5.9 mg/Mcycle). For standard UHMWPE tested with an inclination of 80°, wear was 16% lower than those of the inlays with 45° inclination. Whereas for the vitamys® inlays, the wear rate was about the same for both inclination angles (5.4 mg/Mcycle vs. 5.9 mg/Mcycle,). The addition of Ti particles increased the wear rate of standard UHMWPE to 35 mg/Mcycle. However, vitamys® was hardly affected by the third bodies: the wear rate stood at 7.8 mg/Mcycle. Conclusions. Based on the present simulator study, it seems that hip bearings with the newest generation of HXLPE, stabilised with vitamin E, are exempt from increased wear rate when subjected to severe conditions, such as accelerated ageing, component mal-orientation and third body wear


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 16 - 16
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study. Methods. Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc). BIOLOX. ®. delta ceramic femoral heads were mounted on 12/14 titanium (Ti6Al4V) trunnions. Wear of femoral heads, acetabular liners and trunnions was determined gravimetrically using the analytical balance. Roughness measurements (Sa) were taken on the articulating surfaces (pre and post-test) and on the trunnion surfaces (worn and unworn). Furthermore, Energy Dispersive X-ray Spectroscopy (EDX) was used to identify and quantify the wear debris present in the lubricant using scanning electron microscope (SEM). Results and Discussion. The total volumetric wear was 0.25 mm. 3. for CoC joints and 0.29 mm. 3. for titanium trunnions. The total wear volume of the titanium trunnions was in agreement with an explant study (Kocagoz et al, 2016, CORR) which quantified the volumetric material loss from retrieved trunnions with the total wear ranging from 0.0–0.74 mm. 3. The Sa values, pre-and post-test, for heads were 0.003 ± 0.002 and 0.004 ± 0.001 µm and for liners were 0.005 ± 0.001 and 0.005 ± 0.001 µm. Pre-and post-test measurements for Sa of heads (p = 0.184) and liners (p = 0.184) did not show a statistically significant change. The Sa of the trunnions on the unworn and worn areas showed a statistically significant decrease from 0.558 ± 0.060 to 0.312 ± 0.028 µm respectively (p < 0.001). Analysis of wear debris within the lubricant confirmed the presence of titanium. A recent clinical study (Matharu et al, 2016, BMC Musc Dis) found more ARMD in CoC hips than MoP hips. This is despite there being fewer metallic components in a CoC hip than a MoP hip. This in vitro study has shown that one source of metal debris in a CoC hip is the taper-trunnion junction. Conclusion. An explanation for wear related failures in ceramic-on-ceramic hip arthroplasty, despite the low wear arising at the articulating surfaces, may now exist; namely that titanium wear particles are generated from the trunnion. No other long-term hip simulator studies have measured wear at the taper-trunnion junction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 118 - 118
1 Jun 2012
Kretzer JP Jakubowitz E Sonntag R Reinders J Heisel C
Full Access

Introduction. Osteolysis and aseptic loosening in total hip replacement (THR) is often associated with polyethylene (PE) wear. This caused interest in alternative bearing surfaces. Since the mid nineties, research focused on hard-hard bearings like metal-on-metal (MOM) or ceramic-on-ceramic (COC). However, concerns remain about biological reactions to metallic wear debris or failure of the ceramic components. A new approach to reduce wear with a minimized risk of failure may be the use of a metallic cup in combination with a ceramic head, the so called ceramic-on-metal bearing (COM). The aim of this study was to estimate the wear behaviour at an early stage of this COM bearing type in comparison to COC bearings using a hip simulator. Material and Methods. Simulator studies were carried out on a single station hip simulator (MTS 858 Mini Bionix II, Eden Prairie, USA) in accordance to ISO 14242-1. Bovine serum was used as the test medium. Four COM and four COC bearings were used, both 36mm in diameter. The heads were made of a mixed-oxid ceramic (Biolox Delta(r)) paired with a high carbon wrought CoCrMo cup in the COM group whereas both components were made of Biolox Delta(r) in the COC group. Simulation was run to a total of 2.4×10. 6. cycles. Wear measurements were performed in intervals of 0.2x10. 6. cycles using a gravimetric method (Sartorius Genius ME235S, measuring solution: 15 μg, Sartorius, Göttingen, Germany). Results. Wear of the COM and COC pairings is shown in Figure 1. During the first 200,000 cycles a mean wear rate of 0.16mm. 3. /10. 6. cycles was found followed by a decreased wear rate of 0.04mm. 3. /10. 6. cycles for the COC bearings. The overall wear ranged from 0.08mm. 3. to 0.17mm. 3. , with a mean of 0.12 mm. 3. There was found a high variability in the wear progression between the four COM implants (Figure 1). A mean wear rate of 0.13mm. 3. /10. 6. cycles was determined during the first 200,000 cycles followed by a decreased wear rate of 0.05mm. 3. /10. 6. cycles. The overall wear of the COM implants ranged from 0.02mm. 3. to 0.21mm. 3. , with a mean of 0.13 mm. 3. All ceramic heads from the COM bearings showed metallic material transfer in form of stripes whereas no visible wear traces were found on the COC heads. Discussion and Conclusion. The COM implants showed very low wear levels that were similar to the COC bearings and far below wear levels of conventional MOM bearings. However, there was a spreading up to the thirteen fold between lowest and highest wear volume of the COM at the end of the study. Concerning COM implants such high variability was also seen by other investigators. The simulator conditions are highly reproducible (as seen for the COC bearings). Considering the high variations in patients demand, the influence of patient related activity parameters should be further investigated in terms of wear. Moreover, this study was performed without implementing subluxation, impingement or malalignment which might also increase wear. These effects together with the influence of third body wear needs to be further considered


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 121 - 121
1 Dec 2013
Longaray J Lee R Herrera L Schweitzer A Essner A
Full Access

Burroughs et al showed that frictional torque increases with increasing head size in a simple in vitro model and showed differences in frictional torque with different polyethylene materials [1]. Therefore, the purpose of this study was to evaluate the influence of bearing material and bearing size on the frictional torque of hip bearings utilizing a more physiologically relevant hip simulator model. A total of four hip bearing combinations (Crosslinked PE/CoCr, Conventional PE/CoCr, Crosslinked PE/Delta and Alumina /Alumina) with various bearing sizes were evaluated. The sizes tested in this study range from 22 mm to 44 mm; it is important to note that the study only evaluated bearing combinations (size and material combination) currently commercially available. A total of three samples per bearing combination were tested, with the exception of conventional PE, which included a total of 4 samples. A MTS hip joint simulator was used. All components were oriented anatomically with the femoral head mounted below on a rotating angled block which imparts a 23° biaxial rocking motion onto the head. Loading was held constant at each load level (500N, 1000N, 1500N, 2000N, 2450N) for at least two rotational cycles while all 3 axes of load and all 3 axes of moments were measured at 10 khz. Fresh Alpha Calf Fraction serum was utilized as a lubricant. Results show that frictional torque increases with the increase of head size regardless of head material for all polyethylene combinations (p > 0.05), as shown in Figure 1 and 2. However, results showed no change in frictional behavior for the Alumina/Alumina combination regardless of the bearing size. The results of this test did not show any significant difference between crosslinked PE and conventional PE materials for sizes 28 mm and 32 mm when paired against a CoCr head (p > 0.05) (Figure 3). The Alumina/Alumina bearing combination had the lowest frictional torque among all the bearing material combinations evaluated in this study. This data suggests that there is a strong correlation between increased head size and increased frictional torque (R. 2. = 0.6906, 0.8847) for the polyethylenes evaluated here regardless of head material. No correlation can be concluded for the Alumina /Alumina bearing combination (R. 2. = 0.0217). The combination of Alumina /Alumina seems to have the most favorable frictional properties. This data also suggests no effect on frictional properties regardless of the polyethylene material (crosslinked and conventional) for sizes 28 mm and 32 mm. The frictional torque values recorded in this study are different than those published by Burroughs et al [1]. This difference may be attributed to the testing methodology. The current study utilizes a hip simulator, which closely mimics the natural joint providing a more physiologically relevant model whereas the Burroughs et al study utilizes a single axis machine. It is important to understand that frictional behavior in hip bearings may be highly sensitive to bearing clearance, cup thickness, and stiffness, which may outweight the effect of head diameter. Further evaluation is necessary to isolate and investigate those parameters


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 123 - 123
1 Jan 2016
Porporati AA Pandorf T Haeussler K Streicher R Preuss R Kaddick C
Full Access

INTRODUCTION. The reported revision rate for THA is below 10% at 10 years. Major factors for revision are aseptic loosening or dislocation of the articulating components. CoC bearings in total hip arthroplasty (THA) have demonstrated very low wear rates. Due to producing the least number of wear particles of any articular bearing used for THA, osteolysis is very rarely observed. Zirconia-platelet toughened alumina (ZPTA) has improved toughness and bending strength while maintaining all other advantageous properties of alumina. Consequently, its clinical fracture rate is minimal and wear resistance is superior to alumina. OBJECTIVES. Since a trend exists towards the usage of larger bearings the aim of this study was to compare the tribological behavior of different ZPTA/ZPTA THAs with respect to their ball head diameter. METHODS. Wear tests according to ISO14242-1 were performed in a servo-hydraulic hip simulator with ZPTA bearings from 28 to 48mm up to 5 million cycles (mc). Wear was measured every mc and surfaces were inspected at 5mc. The tests were carried out in 20g/l protein serum. RESULTS. All ZPTA articulations showed a characteristic running in period followed by a steady decrease in wear rate up to 5mc. The 48mm bearing showed highest running in wear. For all bearing sizes wear decreased to about 0.05mm³/mc or less throughout the testing period. For all couplings minimal differences in the wear rate was found. CONCLUSION. The current study supports the extremely low wear rates for ZPTA/ZPTA bearings and showed that increasing the diameter up to 48mm has only a small influence on the wear rate when tested under ISO14242-1 conditions. Larger diameter bearings increase the range of motion and joint stability and reduce the risk of impingement or dislocation. Thus, larger diameter ZPTA bearings seem a safe solution for active patients due to higher dislocation resistance and reduced wear. Other loading conditions such as subluxation are known to contribute to the clinical wear rate and will be investigated in future tests


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 101 - 101
1 Mar 2010
Kretzer J Jakubowitz E Kleinhans J Heisel C
Full Access

In hip joint simulator studies, wear measurement is usually performed gravimetrically. This procedure is reliable for metal-on-polyethylene or ceramic-on-polyethylene bearings, in which relatively high amounts of abrasive wear particles are produced. With modern hard-on-hard bearings, volumetric wear decreases significantly up to 100 to 200-fold. The gravimetric method reaches its detection limit with metal-on-metal bearings and even more so with ceramic-on-ceramic bearings. This study establishes a new method of determining wear in hard-on-hard bearings by measuring the amount of worn particles/ions in the serum of hip simulators. A wear study on three resurfacing hip implants (BHR. ®. , Smith& Nephew) was conducted using a hip joint simulator. Prior to the wear study, tests were performed to validate the detection power for high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). More importantly the system’s accuracy was compared to the gravimetric method, which is described in ISO 14243-2. The simulator was altered to run completely metal ion free. The ion concentration in the serum was measured every 100 000 cycles up to 1 500 000 cycles and subsequently in intervals of 500 000 cycles using HR-ICP-MS. The implants were neither removed from the simulator nor excessively cleaned during the course of the simulation. Serum was refreshed every 500 000 cycles. The serum samples were digested with purified nitric acid and hydrogen peroxide using a high pressure microwave autoclave in order to measure wear particles as well as dissolved ions. All steps were carried out under clean room conditions. Wear was calculated using the ion concentration and measured serum volume. Wear rates and transition from running-in to steady-state wear phases were calculated. A detection power better than 0.028 μg/l for Co (cobalt), 0.017 μg/l for Cr (chromium) and 0.040 μg/l for Mo (molybdenum) was found for HR-ICP-MS. The validation of HR-ICP-MS showed good agreement between gravimetric data and measured ion concentrations. The tested implants showed similar wear behaviour. Implant wear resulted in high ion concentrations during the first 380 000 to 920 000 cycles. During this period, a mean wear rate of 6.96 mm3/10E6 cycles was determined. Subsequently, the wear rate significantly decreased to a mean wear rate of 0.37 mm3/10E6 cycles. Thus, a mean ratio between running-in and steady-state wear of 18.8 was found. The mean overall wear volume at the end of the simulation was 4.42 mm3. This study showed that measuring the ion concentrations in the serum of hip simulators can be used to determine wear in metal-on-metal bearings. The main advantages of this new method are the ability to detect ultra-low wear rates and to precisely specify the duration of different wear phases. Because the implants do not have to be removed from the simulator and aggressive cleaning processes may be skipped, fluctuations in wear detection are extremely low. This in turn leads to a shorter duration of the simulation. Wear rates of the tested implants are low compared to polyethylene. Transferring the results to patient activity, wear would be the same during the first four to six months after implantation as in the next ten years. Minimizing the duration of running-in would be most effective in further reducing wear of metal-on-metal bearings


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 419 - 419
1 Apr 2004
L1 S Ranawat C Furman B
Full Access

Bankston et. al. reported that the clinical wear rates of molded acetabular cups was 50% less than a group of machined UHMWPE cups. However, due to covariables between groups including different femoral stems, cement technique, polyethylene resins and surgeons, unequivocal attribution of the low wear rates to direct molding could not be made. In order to more directly assess the benefits of directly molded acetabular cups vs. machined cups, we report the comparison of hip simulation wear rates of machined and directly molded cups. These simulator results will then compared to two recent clinical reports on molded and machined cups of the same hip stem and cup design. The molded cups were made from 1900 resin and gamma sterilized in an inert atmosphere. The machined cups were made from HSS reference UHMWPE (4150) and gamma sterilized in air. The molded 1900 cups had a 55% lower wear rate after 5 million cycles on the hip simulator (14 v. 31mg/million cycles). Ranawat reported the average linear head penetration rate for 235 direct-lymolded, all polyethylene, cemented cups at a mean follow-up time of 6 years was .075mm/year. This is 56% lower than the rate of .17 mm/year he reported previously for the machined, uncemented metal-backed cups of the same design. These results provide further evidence that directly molding acetabular cups can provide wear rates over 50% less than machined cups both in both clinical and hip simulator evaluations. It is interesting to note based on other reports, that there is no osteolysis at 10 years of follow-up when the wear rates are < 1mm. The clinical and simulation wear rates reported here for the directly molded cups are within this performance range


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 25 - 25
1 Aug 2012
AL-Hajjar M Fisher J Williams S Tipper J Jennings L
Full Access

In vitro the introduction of microseparation and edge loading to hip simulator gait cycle has replicated clinically relevant wear rates and wear mechanisms in ceramic-on-ceramic bearings. [1]. , and elevated the wear rates of MoM surface replacements (SR) to levels similar to those observed in retrievals. [2]. The aim was to assess the wear of two different sized MoM total hip replacement bearings under steep cup inclination angles and adverse microseparation and edge loading conditions. Two tests were performed on the Leeds II hip joint simulator using two different size bearings (28mm and 36mm). Cups were mounted to provide inclination angles of 45 degrees (n=3) and 65 degrees (n=3). The first three million cycles were under standard gait conditions. Microseparation and edge loading conditions as described by Nevelos et al. [1]. were introduced to the gait cycle for the subsequent three million cycles. The lubricant was 25% new born calf serum. The mean wear rates and 95% confidence limits were determined and statistical analysis was performed using One Way ANOVA. Under standard gait conditions, when the cup inclination angle increased from 45 degrees to 65 degrees, the wear of size 28mm bearing significantly (p=0.004) increased by 2.7-fold, however, the larger bearings did not show any increase in wear (p=0.9). The introduction of microseparation conditions resulted in a significant (p=0.0001) increase in wear rates for both bearing sizes under both cup inclination angle conditions. Under microseparation conditions, the increase in cup inclination angle had no influence on the wear rate for both bearing sizes (Figure 1). With larger bearings, head-rim contact occurs at a steeper cup inclination angle providing an advantage over smaller bearings. The introduction of edge loading and microseparation conditions resulted in a significant increase in wear rates for both bearing sizes. The wear rates obtained in this study under combined increased cup inclination angle and microseparation were half of those obtained when SR MoM bearings were tested under similar adverse conditions. [2]. This study shows the importance of prosthesis design and accurate surgical positioning of the head and acetabular cup in MoM THRs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 49 - 49
1 Apr 2019
Langhorn J Maag C Wolters B Laukhuf C
Full Access

Introduction and Aims. A recent submission to ASTM, WK28778 entitled “Standard test method for determination of friction torque and friction factor for hip implants using an anatomical motion hip simulator”, describes a proposal for determining the friction factor of hip implant devices. Determination of a friction factor in an implant bearing couple using a full kinematic walking cycle as described in ISO14242-1 may offer designers and engineers valuable input to improve wear characteristics, minimize torque and improve long term performance of hip implants. The aim of this study was to investigate differences in friction factors between two commercially available polyethylene materials using the procedure proposed. Methods. Two polyethylene acetabular liner material test groups were chosen for this study: commercially available Marathon. ®. (A) and AltrX. ®. (B). All liners were machined to current production specifications with an inner diameter of 36mm and an outer diameter of 56mm. Surface roughness (Ra) of the liner inner diameters were measured using contact profilometry in the head-liner contact area, before and after 3Mcyc of wear testing. Liners were soaked in bovine serum for 48 hours prior to testing. Friction factor measurements were taken per ASTM WK28778 prior to, and after wear testing using an external six degrees of freedom load cell (ATI Industrial Automation) and a reduced maximum vertical load of 1900N. Friction factor and wear testing was conducted in bovine serum (18mg/mL total protein concentration) supplemented with 0.056% sodium azide (preservative) and 5.56mM EDTA (calcium stabilizer) on a 12-station AMTI (Watertown, MA) ADL hip simulator with load soak controls per ISO 14242-1:2014(E). The liners were removed from the machine, cleaned and gravimetric wear determined per ISO 14242-2:2000(E) every 0.5 million cycles (MCyc) through a total of 3Mcyc to evaluate wear. Results. It was observed that although measured wear rates were significantly different between the Marathon. ®. (10.3 ± 2.2mg/Mcyc) and AltrX. ®. (1.7 ± 0.2mg/Mcyc) test groups, the measured friction factors were not significantly different between groups; 0.094 ± 0.015 Marathon. ®. and 0.095 ± 0.007 AltrX. ®. pre wear, and 0.103 ± 0.001 Marathon. ®. and 0.106 ± 0.006 AltrX. ®. post wear. The increase in friction factor observed following wear in of the polyethylene liners is expected. Average friction factors were calculated from data measured in the region from heel strike through toe-off of the gait cycle (the 1. st. 60% of the kinematics cycle described in ISO 14242). It is observed that the resultant friction curves for untested bearing couples had a larger spread across the 4 measured samples than those following 3Mcyc of standard wear, most likely due to variations in polyethylene roughness, contact area and clearances between the bearing couples in the as received state. Conclusions. It is concluded from this study that the draft ASTM protocol proposed is capable of measuring frictional effects in MoP hip bearing couples, and for the polyethylene materials tested herein there is no significant difference between the average measured friction factors when all other parameters (i.e. design and gait cycle) are controlled


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 57 - 57
11 Apr 2023
Etchels L Wang L Thompson J Wilcox R Jones A
Full Access

Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation.

A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical inclination, 4mm mismatch, 70N swing phase load, and 100N/mm spring. Fixture mass was varied from 0.5-5kg, spring damping coefficient was varied from 0-2Ns/mm. They were changed independently, and in combination.

Maximum separation values were relatively insensitive to changes in the mass, damping coefficient, or both. The sensitivity of peak plastic strain, to this range of inputs, was similar to changing the swing phase load from 70N to approximately 150N – 200N. Increasing the fixture mass and/or damping coefficient increased the peak plastic strain, with values from 0.15-0.19.

Liner plastic deformation was sensitive to the spring damping and fixture mass, which may explain some of the differences in fatigue and deformation results in UHMWPE liners tested on different machines or with modified fixtures. These values should be described when reporting the results of ISO14242:4 testing.

Acknowledgements

Funded by EPSRC grant EP/N02480X/1; CAD supplied by DePuy Synthes.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 103 - 103
1 Mar 2010
Kubo K Clarke I Williams P Sorimachi T Halim T Gustafson A Yamamoto K
Full Access

Wear in polyethylene liners appears to be exacerbated by 3rd-body abrasion effects with the CoCr ball combinations used for total hip replacements. This has implications for various wear modes encountered in patients. Yet clinical and laboratory studies have offered weak and sometimes contradictory wear relationships with respect to crosslinking, ball diameter and roughness, and 3rd-body wear effects. Our hip simulator model investigated the effect of severe wear challenges by 3rd-body cement particles, using large diameter CoCr and alumina balls, with highly-crosslinked polyethylene liners (HXPE) irradiated to 75kGy compared to contemporary controls (CXPE 35kGy). The polyethylene liners were gamma-irradiated to 35/75kGy under N2 (CXPE/HXPE). We used 32 and 44mm CoCr balls (ENCORE, Austin, TX) and 44mm alumina-ceramic (Biolox-forte, CeramTecAG) as ‘scratch-resistant’ standard of comparison. We compared 5 bearings pairs with different roughness characteristics using both new and pre-worn polyethylene liners. A 12-station orbital hip simulator with a physiological load profile (0.2kN–3kN load, frequency 1Hz) with cups mounted in “Inverted- position”. Diluted bovine serum (Hyclone Inc., Logan, UT) was used as lubricant (20mg/ml protein, 400ml volume). In phase I, all cups were run in standard (‘clean’) lubricant for 1.5 million cycles (1.5Mc). In phase II, the liners were run in a PMMA slurry of serum (5mg/ml) for 2Mc. In phase III, implants were run ‘clean’ for 1.5Mc. Wear-rate was measured each 0.25Mc event, and surface roughness measured by SEM (XL-30FEG) and white light interferometry (Newview600, Zygo) every 0.5Mc. In phase I, Wear withnew CXPE and HXPE liners averaged 182mm3/Mc and 30mm3/Mc. Thus the HXPE liners averaged a 6.0-fold wear reduction compared to controls. Compared to new liners, the pre-worn CXPE and HXPE liners showed 10% and 25%, greater wear respectively. Here it was noted that CoCr balls maintained similar roughness (Sa:8–12nm). And alumina balls showed small, gradual increase (Sa: 2 to 2.5nm). The HXPE maintained a superior finish to CXPE controls. Roughness revealed a gradual decrease with time, pre-worn CXPE from 0.28 to 0.15um and pre-worn HXPE from 0.18 to 0.04um (Sa). In contrast, new HXPE showed a dramatic smoothing (0.8 to 0.1um) 92.8% decreased in first 0.5Mc. These effects have not been previously quantified. In phase II with abrasive mode, the liner wear-rates increased dramatically by 6 and 80-fold for CXPE and HXPE, respectively. These data confirmed that HXPE was sensitive to ‘severe’ wear against CoCr and alumina balls. In phase III, the polyethylene roughness dropped by > 90% and wear decreased to phase-I values. The wear-ratio was now 2:1 for CXPE:HXPE as predicted by the ‘diameter’ and ‘crosslinking’ algorithms. It was clear that surface roughness was not a confounding factorfor either the CoCr or alumina balls. It was the polyethylene surface roughness that appeared to influence wear rates. Our analysis showed that there was a transient due to patches of abrasive cement transferring onto CoCr ball surfaces. Overall the actual roughness of the CoCr balls did not change and was therefore not a factor in increased polyethylene wear


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 88 - 88
1 Jan 2016
Clarke I Halim T Burgett-Moreno M Thompson J Vinciguerra J Donaldson T
Full Access

Introduction. Over 40-years the dominant form of implant fixation has been bone cement (PMMA). However the presence of circulating PMMA debris represents a 3rd-body wear mechanism for metal-on-polyethylene (MPE). Wear studies using PMMA slurries represent tests of clinical relevance (Table 1). Cup designs now use many varieties of highly-crosslinked polyethylene (HXPE) of improved wear resistance. However there appears to be no adverse wear studies of vitamin-E blended cups.1–4 The addition of vitamin E as an anti-oxidant is the currently preferred method to preserve mechanical properties and ageing resistance of HXPE. Therefore the present study examined the response of vitamin-E blended liners to PMMA abrasion combined with CoCr and ceramic heads. The hip simulator wear study was run in two phases to compare wear with, (i) clean lubricants and (ii) PMMA slurries. Methods. The vitamin-e blended polyethylene liners (HXe+) were provided by DJO Surgical (Austin, TX) with 40mm CoCr and ceramic femoral heads (Biolox-delta). Polyethylene liners were run in standard “Inverted” test. (Table 1) All cups were run in ‘clean’ serum lubricant for 6-million load cycles (6Mc)5 and in a debris slurry (PMMA: 5mg/ml concentration) for 2Mc.4 A commercial bone cement powder was used as “abrasive” (Biomet, Warsaw, IN). PMMA slurries were added at test intervals 6, 6.5, 7 and 7.5Mc.4 Wear was assessed gravimetrically and characterized by linear regression. Bearing roughness was analyzed by interferometry and SEM. Results. The acetabular cups showed low wear-rates to 6Mc duration with both ceramic and CoCr heads (Fig. 1). The debris slurries created much higher wear-rates, whereas control liners continued as before (Table 2). Discussion. This is the 1st study of vitamin-E blended polyethylene under 3rd-body wear conditions. With clean lubricant conditions, CPE combination wore approximately 50% less than MPE combination. Under abrasive lubricant conditions, CPE and MPE combinations wore at approximately same rate but more than an order of magnitude greater than the clean test phase. This was typical of such PMMA abrasion tests (Table 1). However there are no guidelines as to optimal choice of particulate type, morphology, dosage, frequency of injection or duration of test intervals (Table 1). The production of particulates in vivo is an unpredictable phenomenon and consequently laboratory simulation is fraught with uncertainties.6 On completion of the abrasive challenge (6–8Mc duration), our study will continue under clean conditions to 10Mc to define the important recovery phase of the vitamin-E blended polyethylene.3


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 448 - 448
1 Nov 2011
Weisenburger J Naylor M Schroeder D White B Unsworth A Garvin K Haider H
Full Access

With the boom in metal-on-metal hip resurfacing and hard-on-hard total hip replacements (THRs) with extremely low wear, accurate tribological measurements become difficult. Characterizing THR friction can help in this, especially if the progress of such friction can be tracked during wear tests. Friction measurement can also be used as a tool to study the effects of acetabular-liner deformation during insertion, and possible femoral head “clamping”. This study presents estimates of friction during extended wear testing on THRs of the same size but with different material combinations, using a technique (previously introduced) based on equilibrium of forces and moments measured in the simulator. All tests were based on five million cycles (Mc) and samples of size-44mm (head diameter). Samples included 6 metal-on-UHMWPE (MOP) (3 with conventional UHMWPE and 3 with highly-cross-linked (HXL) UHWMPE liners), 6 metal-on-metal (MOM) (3 TiN-coated and 3 uncoated), 6 MOM resurfacing (3 standard and 3 with small pockets for lubrication transport), and 3 ceramic-on-UHMWPE (COP) THRs (MOM resurfacing and COPs for 2Mc only). All were lubricated with diluted bovine serum with 20g/l protein concentration at 37°C, and subjected to the loading and rotations of the walking cycle in ISO-14242-1 on a twelve-station hip simulator (AMTI, Boston). The conventional and HXL MOPs had steady friction factors of 0.045±0.009 and 0.046±0.003 over 5Mc, explained by the stability of wear rates of both these MOP types (72.0±2.81mg/Mc and 14.2±3.57mg/Mc, respectively). However, during the “bedding-in” period (first 0.5Mc), the conventional MOP friction factor rose from 0.047±0.004 to 0.057±0.004 while high wear was occurring (147.1±10.08mg/Mc). The TiN-coated and uncoated MOMs displayed initial friction factors of 0.124±0.117 and 0.039±0.003 respectively. The high standard deviation for the coated THRs was due to coating removal on one specimen which caused scratches and scuffs on its articulating surfaces. This specimen had a friction factor of 0.260 at 0.028Mc. By 1Mc, the TiN coating wore away on the other two coated specimens (friction factors at 1Mc: coated 0.081±0.036, uncoated 0.050±0.014). Over the 5Mc test, average friction factors for the coated and uncoated THRs were 0.097±0.020 and 0.049±0.014 respectively. The 44mm standard and “pocketed” MOM resurfacing THRs displayed initial friction factors of 0.038±0.009 and 0.059±0.026 respectively that increased to the same level at 2Mc (0.094±0.020 and 0.094±0.029, respectively). No difference in wear was detected between the two resurfacing head types (wear rates over 2Mc: standard 3.32±0.25mg/ Mc, pocketed 2.22±1.76mg/Mc), but curiously, both types exhibited an equal level of scratching and scuffing on their articular surface. Finally, the three COP THRs exhibited high liner wear over 2Mc (97.44±3.08mg/Mc), which slowed after the “bedding-in” period. The friction factor also decreased from 0.091±0.005 to 0.070±0.008 over the same period as the UHMWPE liner conformed to the ceramic head. The method utilized here facilitates on-line sampling throughout the progress of a prolonged wear test, and therefore allows predictions on THR performance/wear to be made. When high friction factors were observed, a high wear rate was occurring and measured on the THR specimens, or damage to articulating surfaces was seen


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 404 - 404
1 Nov 2011
Clarke IC Kubo K Lombardi A McPherson E Turnbull A Gustafson A Donaldson D
Full Access

Ceramic-on-ceramic alumina bearings (ALX) have demonstrated low wear with minimal biological consequences for almost four decades. An alumina-zirconia composite (BIOLOX-DELTATM) was introduced in 2000 as an alternative ceramic. This contains well-distributed zirconia grains that can undergo some surface phase transformations from tetragonal to monoclinic. We analyzed 5 cases revised at 1–7 years to compare to our simulator wear studies. For the retrieved DELTA bearings, two important questions were. how much tetragonal to monoclinic transformation was there in the zirconia phase and. how much did the articular surfaces roughen, either as a result of this transformation or from formation of stripe wear zones?. The retrieval cases were photographed and logged with respect to clinical and revision details. The DELTA balls varied from 22mm to 36mm diameters. These had been mated with liner inserts varying by UHMWPE, BIOLOX-FORTE and BIOLOX-DELTA materials. Bearing features were analyzed for roughness by white-light interferometry, for wear by SEM, for dimensions by CMM and for transfer layers by EDS technique. Surface transformations on DELTA retrievals were mapped by XRD. The four combinations of 36mm diameter BIOLOX-FORTE and BIOLOX-DELTA were studied in a hip simulator, which was run in ‘severe’ micro-separation test mode to 5 million cycles. Wear rates, wear stripes, bearing roughness and wear debris were compared to the retrieval data. In two DELTA ball cases, there were conspicuous impingement signs, stripe wear and black metallic smears. It is to be noted that the metal transfer sites (EDS) appeared to be from the revision procedures. The retrieved balls run with alumina liners showed monoclinic phase peaking at 32% on the particular surface and internal bore. On the fracture surface of case 1, the monoclinic content had increased to 40%. Various surface roughness indices were assessed on the bearings. The polished articular surfaces averaged roughness (Sa) of the order 3 nm, representing extremely smooth surfaces. The main wear zone was only marginally rougher (5 nm). In contrast the stripe wear zones had roughness of the order 55–140 nm. In the laboratory, the DELTA bearings provided a 3–6 fold wear reduction compared to FORTE controls. Roughness of stripes increased to maximum 113nm on controls. Roughness of wear stripes showed FORTE with the highest and DELTA with the lowest values. DELTA bearings also revealed much milder wear by SEM imaging. Phase transformations showed peaks at < 30% for both main wear zone and stripe wear sites. It is hypothesized that the concentration of monoclinic phase reached a certain level due to compression contraint imposed by the alumina matrix. With implant wear, additional tetragonal grains of zirconia are exposed and these will also transform to tetragonal. This consistency between laboratory and retrieval studies confirmed the stable nature of the bearings. The BIOLOX-DELTA combination provides optimal potential for a clinically relevant reduction in stripe wear


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 584 - 584
1 Dec 2013
Weisenburger J Garvin K Haider H
Full Access

Damage to metallic femoral heads can occur in vivo. Testing of hip prostheses under abrasive conditions is one among various efforts needed towards more realistic and harsher testing. Abrasion likely increases both wear and friction at the head/liner interface. This study investigates if our novel friction measurement technique can detect damage to femoral heads during extended wear testing of metal-on-plastic (MOP) THRs of various material combinations using both scratched and as-new femoral heads. Friction was measured based on equilibrium of forces and moments measured by a 6-DOF load cell on each test station of an AMTI hip simulator. The force and moment data from the load cells was utilized to calculate the frictional torque about each of three rotational axes (flexion/extension, abduction/adduction and internal/external rotation). The frictional torques were transformed to account for the offset in load cell position from the hip center and were then vector summed to yield an overall frictional torque about the femoral head. The friction factor was then computed by dividing the overall frictional torque by the applied compressive load and the femoral head radius. The waveforms specified in ISO-14242-1 were used. Diluted bovine serum at 37°C with 30 g/L protein concentration lubricated the specimens. Twelve UHMWPE liners (40 mm I.D.) were tested against CoCrMo femoral heads. Liners were of three materials: a) Three conventional (GUR1020, gamma-sterilized 3.5 Mrad), b) Three highly cross-linked (HXL) (GUR 1020, 10 Mrad, annealed, EtO-sterilized, artificially aged), and c) Six HXL w/vitamin-E (GUR 1020, 12 Mrad, annealed, EtO-sterilized, aged). The test consisted of three phases were as follows: . –. Phase-I: Standard clean (non-abrasive) test for 5 Mc. –. Phase-II: Pulverized PMMA was added to serum at 700 mg/L (to introduce abrasive conditions); however, effects were minimal after 2 Mc (7 Mc total). –. Phase-III: Femoral heads were scratched using a technique developed in house to create latitudinal and longitudinal scratches similar to what is seen on retrievals. Phase-III lasted for 1 Mc, for a total of 8 Mc. The friction results are shown in Fig. 1. Friction factors of the three THR types tested were similar for the first 5 Mc (0.062 ± 0.0084) and increased only marginally after the PMMA powder was added (0.066 ± 0.0066). The PMMA powder did not appear to damage the heads much visually, and therefore the insignificant increase was not surprising. However, once heads were intentionally scratched at 7 Mc, the friction factor rose on all three THR types: a) 0.11 ± 0.0077, b) 0.082 ± 0.0049, c) 0.087 ± 0.022. This friction technique successfully detected when femoral head damage had occurred. Higher friction was clearly observed after femoral heads had been scratched


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 441 - 441
1 Nov 2011
Giddings D Wu JJ Khan I Unsworth A
Full Access

Artificial hip joints have been in use for a number of years; various combinations of metals and polymers have been tested both in vitro and in vivo. Modern ceramics have found application as bearings in hip replacement due to the enhanced wear and friction that they offer. It has been hypothesised that during the swing phase of gait it is possible for the Femoral head and the Acetabular cup to dislocate, before relocating during heel contact. Severe loading such as this could cause greater levels of wear to occur in artificial hip joints. This study provides comparative analysis between ceramic-on-ceramic hip joint pairings under both severe and standard loading profiles. Five zirconia-toughened alumina (ZTA) 28mm diameter bearing pairs were tested on a ProSim Hip Simulator for 5.3 million cycles (MC), two under severe loading and three under standard loading conditions. Additionally a Loaded Soak Control, Soak Control and Environmental Control were used. Wear was recorded every 0.5 MC by gravimetric measurement. Surface microscopy images from a Zygo New View 100 and an Atomic Force Microscope (AFM) were taken before testing and then at, 0.5 MC. 2.5 MC, and 5.3 MC. The standard loading profile followed . ISO14242. -1 standard with 2650±50N maximum force, ±10° internal-external rotation and −15–30° flexion-extension. To simulate aggressive wear condition, microseparation inferiorly and micro-lateralisation laterally were applied during the swing phase. Dual acting cylinders were used to apply a constant force of 350±50N in opposition to the standard loading profile to enable separation between the Femoral Head and the Acetabular Cup during the swing phase. This microseparation was measured by means of a Linear Variable Differential Transformer (LVDT) and the setting gave a reading of 1.2mm ± 0.1mm at the start of each 0.5 million run. The value for microlateralisation was 0.9mm whilst the inferior separation was 1.2mm. Wear rates for the ceramic cups under severe wear condition were found to be 0.0356±0.0059mm3/ MC and for the standard wear condition to be 0.0178±0.0049mm3/MC. The femoral heads had wear rates of 0.0164±0.0046mm3/MC for severe wear condition and no wear was detected for the standard wear condition. The results of the present study showed almost no wear under standard gait condition and only a modest increase in wear occurred when using severe wear condition. Thus the resulting wear rates are still significantly lower than those found for alumina-alumina total hip joints [. 1. , . 2. ]