Intro: Total knee replacement (TKR) manufacturers offer the option of
The objective of this study was to evaluate the kinematics of a high-flexion, posterior-stabilized total knee arthroplasty (TKA) in weight-bearing, deep knee bending motion. Fifteen patients implanted with the Legacy Posterior Stabilized Flex (8; mobile bearing and 7; fixed bearing), 18 patients with Scorpio NRG, and 8 patients with PFC sigma RP-F were examined during a deep knee bending motion using fluoroscopy. Femorotibial motion was determined using a 2-dimensional to 3-dimensional registration technique, which used computer-assisted design models to reproduce the position of metallic implants from single-view fluoroscopic images. The average flex-ion ranges of motion between the metallic implants were 120° with Legacy Flex, 125° with NRG and 121° with RP-F. The average rotation of the femoral component was 11° external rotation (ER) with Legacy Flex, 12° with NRG and 11° with RP-F. The mean kinematic pathways were early rollback, lateral pivot with ER, and bicondylar rollback with Legacy Flex, medial pivot with ER and bicondylar rollback with NRG and central pivot with ER and bicondylar rollback with RP-F. The in vivo kinematics was different due to the prosthesis designs to obtain weight-bearing deep knee bending motion.
The purpose of this study is toevaluate the clinical and radiologic results after high flexiontotal knee arthroplasty, Lospa®(Corentec Inc.) with 10mm cutting of posterior femoral condyle and LPS-Flex®(Zimmer Inc.) with 12.5mm cutting of posterior femoral condyle.(Fig. 1) We prospectively compared 205 knees in 128 patients who underwent arthroplasty usingLospa®(groupA) and 63 knees in 48 patients who underwentarthroplasty using NexGen LPS-Flex®(group B) from September 2010 to March 2012 at Department of Orthopaedic Surgery, Sun General Hospital (Daejeon, Korea). Mean follow-up period was 33 months(24–42) in group A and 33months(23–45) in group B, and mean age was 69.5 in group A, 70.4 in group B. The radiologic analysis included the change of mechanical axis deviation and femoro-tibial angle, implant position (α,β,γ,δ)(Fig 2). The clinical results were evaluated according to Hospital for special surgery (HSS), Knee society score (KSS), and range of motion.Purpose
Materials and Methods
Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition. Results. As compared to intact UKA, there was no significant difference in AP translation in PCL-deficient UKA with a low flexion angle, but AP translation significantly increased in the PCL-deficient UKA with
Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during
Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down. Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10. -16. m. 4. /N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio. High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control. Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve
Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. Methods. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity. Results. The conforming design showed significantly different kinematics in femoral rollback and internal rotation compared to that of the intact knee. The flat design showed significantly different kinematics in femoral rotation during
‘High flexion’ polyethylene tibial tray inserts are available from total knee replacement (TKR) manufacturers. There is currently no published data available that examines how much extra knee flexion these new implants give or if there are any wear consequences for the change in design. The
Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during
Femoroacetabular impingement (FAI) deformities are a potential precursor to hip osteoarthritis and an important contributor to non-arthritic hip pain. Some hips with FAI deformities develop symptoms of pain in the hip and groin that are primarily position related. The reason for pain generation in these hips is unclear. Understanding potential impingement mechanisms in FAI hips will help us understand pain generation. Impingement between the femoral head-neck contour and acetabular rim has been proposed as a pathomechanism in FAI hips. This proposed pathomechanism has not been quantified with direct measurements in physiological postures. Research question: Is femoroacetabular clearance different in symptomatic FAI hips compared to asymptomatic FAI and control hips in sitting flexion, adduction, and internal rotation (FADIR) and squatting postures?. We recruited 33 participants: 9 with symptomatic FAI, 13 with asymptomatic FAI, and 11 controls from the Investigation of Mobility, Physical Activity, and Knowledge Translation in Hip Pain (IMAKT-HIP) cohort. We scanned each participant's study hip in sitting FADIR and squatting postures using an upright open MRI scanner (MROpen, Paramed, Genoa, Italy). We quantified femoroacetabular clearance in sitting FADIR and squatting using beta angle measurements which have been shown to be a reliable surrogate for acetabular rim pressures. We chose sitting FADIR and squatting because they represent, respectively, passive and active maneuvers that involve
Introduction.
Increasingly,
Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with
Introduction. Total-knee-arthroplasty (TKA) is used to restore knee function and is a well-established treatment of osteoarthritis. Along with the widely used fixed bearing TKA design, some surgeons opt to use mobile bearing designs. The mobile-bearing TKA is believed to allow for more freedom in placement of the tibial plate, greater range of motion in internal-external (IE) rotation and greater constraint through the articular surface. This current study evaluates 1) the kinematics of a high constraint three condyle mobile bearing TKA, 2) the insert rotation relative to the tibia, and 3) compares them with the intact knee joint kinematics during laxity tests and activities-of-daily-living (lunge, level walking, stairs down). We hypothesize that 1) in contrast to the intact state the anterior-posterior (AP) stability of the implanted joint increases when increasing compression level while 2) maintaining the IE mobility, and that 3) the high constraint does not prevent differential femorotibial rollback during lunge. Methods. Six fresh-frozen human cadaveric knee joints with a mean donor age of 64.5 (±2.4) years and BMI of 23.3 (±7.3) were tested on a robot (KR140, KUKA) in two different states: 1) intact, 2) after implantation of a three condyle mobile bearing TKA. The tibia plateau and the insert of each tested specimen were equipped with a sensor to measure the insert rotation during testing. Laxity tests were done at extension and under flexion (15°, 30°, 45°, 60° 90°, 120°) by applying subsequent forces in AP and medial-lateral (ML) of ±100N and moments in IE and varus-valgus (VV) rotation (6Nm/4Nm, 12 Nm/-). Testing was performed under low (44N) and weight bearing compression (500N). Loading during the lunge, level walking and stairs descent activity was based on in-vivo data. Resulting data was averaged and compared with the kinematics of the intact knee. Results. Increasing the joint compression resulted in a 90% reduced AP laxity (increased stability) for the implanted case while the intact knee laxity stayed similar. In high compression the implanted IE mobility was reduced by 45% for low and mid flexion angles and by 20% for
Introduction. Revision total knee arthroplasy (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone resorption beneath metal block augmentation has been still reported and little information about the reasons of the occurrence of bone resorption is available. The aim of the current study is to identify a possibility of the potential occurrence of bone resorption beneath metal block augmentation, through evaluation of strain distribution beneath metal block augmentation in revision TKA with metal block augmentation, during
Introduction. Revision total knee arthroplasty (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone defects are frequently detected in revision TKA used with metal block augmentation. This study focused on identification of a potential possibility of the bone defect occurrence through the evaluation of the strain distribution on the cortical bone of the tibia implanted revision TKA with metal block augmentation, during
A total knee design has been developed to support
Accurate in vivo knee joint contact forces are required for joint simulator protocols and finite element models during the development and testing of total knee replacements (Varadarajan et al., 2008.) More accurate knowledge of knee joint contact forces during
Introduction. Positive expectations can increase compliance with treatment and realistic expectations may reduce postoperative dissatisfaction. Recently there are articles regarding expectations of patients from their TKA in western literature and only few articles based on Korean populations which don't encompass the whole spectrum of expectations in Korean patients. In all those articles based on pre-operative expectation, results were applied to whole expectation category uniformly not differentially. We aimed to document the pre-operative expectations in Korean patients undergoing total knee replacement using an established survey form and to determine whether expectations were influenced by socio-demographic factors and socio-demographic factors influences expectation items in particular category uniformly or differentially. Methods. Expectations regarding 19 items in the Knee Replacement Expectation Survey form were investigated in 228 patients scheduled for total knee replacement. The levels and distribution patterns of individual and summated expectation of five expectation categories; relief from pain, baseline activity,