Introduction: Radial Impaction
Introduction: Total hip arthroplasty is one of the most frequently performed surgical procedures, with implants usually giving over 90% survival at 10 years. The failure rate is primarily due to aseptic loosening often associated with progressive bone stock loss. Impaction of cancellous morselized allografts with cement can be used for revision total hip arthroplasty in such cases. There is increasing interest in the use of synthetic bone graft substitutes as extenders to allograft due to the shortage and variable quality of allograft. A chemically-pure synthetic calcium phosphate (CaP) allograft extender is compared with allograft alone for acetabular and/or femoral revisions using the Impaction
This study documents the use of bone graft harvested by the RIA system and used in treating segmental bone loss in the femur and tibia following trauma. Eight patients with segmental defects of the tibia or femur were enrolled in the study. The segmental defects were optimized for bone grafting by repeated debridements and muscle flap coverage as required. Graft was harvested from the ipsilateral femur via a percutaneous technique. Volumes of bone graft were recorded and then placed to the defect site during the same surgical procedure. The average age of the patients was twenty-nine years (sixteen to forty-one years). In the five tibiae and three femora there were four grade IIIA, three grade IIIB and One grade IIIC injuries. Muscle flap coverage was required in four patients. The average size of defect was 7 cm (1–14.5 cm). The RIA grafting was performed at an average of three months (2.5 – 5 months) post injury. The average bone graft volume obtained was 73cc(45–90 cc). The average hemoglobin drop was 4.4g/dl(2.3 – 8.0 g/dl) and the average hematocrit drop was 12.3%(6–21%). One patient required transfusion. Donor site complications were limited to one post-operative bleed. Defect site complications included one wound dehiscence and two infections. Radiographic union of the defects was achieved at an average time of four months (two to twelve months).
Large osteochondral defects (OCD) of the talus present a difficult management conundrum. We present a series of Maioregen xenograft patches applied through an open approach, early lessons from the technique and good early outcomes, in patients who are otherwise looking at ankle salvage techniques. 16 patients underwent open patch procedures, performed by a single surgeon, over a 30 month period. 12 males, and 4 females with age at presentation from 21–48. The majority were young, male, in physical employment with active sporting interest. MoxFQ, and E5QD were collected preop, 3, 6, 12 month postoperatively. There were significant improvements in ROM, pain, and scores in the cohort. 3 cases returned to Theatre, 1 for a concern about late infection, which settled with good outcome, and a further 2 with metalwork / adhesions.Introduction
Results
Ankle and hindfoot fusion in the presence of large bony defects represents a challenging problem. Treatment options include acute shortening and fusion or void filling with metal cages or structural allograft, which both have historically low union rates. Impaction grafting is an alternative option. A 2 centre retrospective review of consecutive series of 32 patients undergoing hindfoot fusions with impaction bone grafting of morselised femoral head allograft to fill large bony void defects was performed. Union was assessed clinically and with either plain radiography or weightbearing CT scanning. Indications included failed total ankle replacement (24 patients), talar osteonecrosis (6 patients) and fracture non-union (2 patients). Mean depth of the defect was 29 ±10.7 mm and mean maximal cross-sectional area was 15.9 ±5.8 cm2. Tibiotalocalcaneal (TTC) arthrodesis was performed in 24 patients, ankle arthrodesis in 7 patients and triple arthrodesis in 1 patient.Background
Methods
Glenoid bone grafting in reverse total shoulder arthroplasty (RTSA) has emerged as an effective method of restoring bone stock in the presence of complex glenoid bone loss, yet there is limited published evidence on efficacy. The aim of this study was to conduct an analysis of clinical and radiographic outcomes associated with glenoid bone grafting in primary RTSA. Patients who underwent a primary RTSA with glenoid bone grafting were retrospectively identified from the databases of two senior shoulder surgeons. Inclusion criteria included minimum of 12 months clinical and/or radiographical follow up. Patients underwent preoperative clinical and radiographic assessment. Graft characteristics (source, type, preparation), range of movement (ROM), patient-reported outcome measures (Oxford Shoulder Scores [OSS]), and complications were recorded. Radiographic imaging was used to analyse implant stability, graft incorporation, and notching by two independent reviewers. Between 2013 and 2021, a total of 53 primary RTSA procedures (48 patients) with glenoid bone grafting were identified. Humeral head autograft was used in 51 (96%) of cases. Femoral head allograft was utilised in two cases. Depending on the morphology of glenoid bone loss, a combination of structural (corticocancellous) and non-structural (cancellous) grafts were used to restore glenoid bone stock and the joint line. All grafts were incorporated at review. The mean post-operative OSS was significantly higher than the pre-operative OSS (40 vs. 22, p < 0.001). ROM was significantly improved post-operatively. One patient is being investigated for residual activity-related shoulder pain. This patient also experienced scapular notching resulting in the fracturing of the inferior screw. One patient experienced recurrent dislocations but was not revised. Overall, at short term follow up, glenoid bone grafting was effective in addressing glenoid bone loss with excellent functional and clinical outcomes when used for complex bone loss in primary RTSA. The graft incorporation rate was high, with an associated low complication rate.
In specific conditions, infection may lead to bone loss and is difficult to treat1. Current clinical approaches rely on the introduction of antibiotics. While these may be effective, there are concerns regarding the rise of antimicrobial resistance. There is therefore interest in the development of antimicrobial bone graft substitutes for dental and trauma surgery. The incorporation of zinc into biomaterials has been shown to confer broad spectrum antimicrobial activity, but this has not yet been applied to the development of a commercial bone graft substitute. The aim of this research was therefore to prepare and characterise a series of zinc-substituted nanoscale hydroxyapatite (nHA) materials, including evaluation of antimicrobial activity.Introduction
Aim & Objectives
Vascularized fibular grafting following tumor resection is an essential treatment option in limb salvage surgery. This study aimed to assess the surgical and oncological outcomes of patients treated in Denmark between 2010 and 2022. We present a retrospective review of a national cohort comprising 27 patients. The indications were 13 cases of Ewing sarcoma, 12 cases of osteosarcoma, and 2 cases of giant cell tumor. The median age at surgery was 16 years (range: 2-39), and the median follow-up was 82 months (range: 12-138). Patients were analyzed overall and stratified into upper and lower extremity groups based on tumor location.Introduction
Method
Treatment of large bone defects represents a great challenge for orthopedic surgeons. The main causes are congenital abnormalities, traumas, osteomyelitis and bone resection due to cancer. Each surgical method for bone reconstruction leads its own burden of complications. The gold standard is considered the autologous bone graft, either of cancellous or cortical origin, but due to graft resorption and a limitation for large defect, allograft techniques have been identified. In the bone defect, these include the placement of cadaver bone or cement spacer to create the ‘Biological Chamber’ to restore bone regeneration, according to the Masquelet technique. We report eight patients, with large bone defect (for various etiologies and with an average size defect of 13.3 cm) in the lower and upper limbs, who underwent surgery at our Traumatology Department, between January 2019 and October 2020. Three patients were treated with both cortical and cancellous autologous bone grafts, while five received cortical or cement spacer allografts from donors. They underwent pre and postoperative radiographs and complete osseointegration was observed in all patients already undergoing monthly radiographic checks, with a restoration of length and range of motion. In our study, both the two stage-Masquelet and the cortical bone graft from a cadaver donor proved to be valid techniques in patients with very extensive defects to reconstruct the defect, restore the length, minimize implant left in situ and achieve complete functional recovery.
The purpose of this study is to evaluate the radiological and clinical outcomes in Northern Ireland of free vascularised fibular bone grafting for the treatment of humeral bone loss secondary to osteomyelitis. Upper limb skeletal bone loss due to osteomyelitis is a devastating and challenging complication to manage for both surgeon and patient. Patients can be left with life altering disability and functional impairment. This limb threatening complication raises the question of salvage versus amputation and the associated risk and benefits of each. Free vascularised fibula grafting is a recognised treatment option for large skeletal defects in long bones but is not without significant risk. The benefit of vascularised over non-vascularised fibula grafts include preservation of blood supply lending itself to improved remodeling and osteointegration. Sixteen patients in Northern Ireland had free vascularised fibula grafting. Inclusion criteria included grafting to humeral defects secondary to osteomyelitis. Six patients were included in this study. Patients were contacted to complete DASH (Disabilities of the Arm, Shoulder and Hand) questionnaires as our primary outcome measure. Secondary outcome measures included radiological evaluation of osteointegration and associated operative complications. Complications were assessed via review of Electronic Care Record outpatient and in-patient documents.Introduction
Materials & Methods
The purpose of this study was to determine the outcomes of revision ankle replacements, using the Invision implant and impaction allograft for massive talar dome defects following primary ankle replacement failure. Outcomes were assessed in terms of bone graft incorporation; improvement in patient reported outcome measures (PROMs); and survivorship of the revision ankle arthroplasty. A retrospective review of prospectively collected data identified eleven patients who had massive bone cysts and underwent revision of a failed primary total ankle replacement to the Invision revision system, combined with impaction grafting using morselized femoral head allograft. These revisions occurred at a single high volume ankle arthroplasty centre. Computed tomography (CT) scans were used to assess bone graft incorporation and the Manchester-Oxford Foot Questionnaire (MOXFQ) and EQ-5D scores were used pre and post operatively to assess PROMs.Objective
Methods
Reverse total shoulder arthroplasty (RSA) with glenoid bone grafting has become a common option for the management of significant glenoid bone loss and deformity associated with glenohumeral osteoarthritis. Despite the increasing utilization of this technique, our understanding of the rates of bone graft union, complications and outcomes are limited. The objectives of this systematic review are to determine 1) the overall rate of bone graft union, 2) the rate of union stratified by graft type and technique, 3) the reoperation and complication rates, and 4) functional outcomes, including range of motion (ROM) and functional outcome scores following RSA with glenoid bone grafting. A comprehensive search of MEDLINE, Embase, and CINAHL databases was completed for studies reporting outcomes following RSA with glenoid bone grafting. Inclusion criteria included clinical studies with greater than 10 patients, and minimum follow up of one year. Studies were screened independently by two reviewers and quality assessment was performed using the MINORs criteria. Pooled and frequency-weighted means and standard deviations were calculated where applicable. Overall, 15 studies were included, including nine retrospective case series (level IV), four retrospective cohort studies (level III), one prospective cohort study (level II) and one randomized control trial (level I). The entire cohort consisted of 555 patients with a mean age of 71.9±2.1 years and 70 percent female. The mean follow-up was 33.8±9.4 months. Across all procedures, 84.9% (N=471) were primary arthroplasties, and 15.1% (N=84) were revisions. The overall graft union rate was 89.2%, but was higher at 96.1% among studies that used autograft bone (9 studies, N=308). When stratified by technique, bone graft for the purposes of lateralization resulted in a 100% union rate (4 studies, N=139), while eccentric bone grafts used in asymmetric bone loss resulted in a lower union rate of 84.9% (10 studies, N=345). The overall revision rate was 6.5%, and was lowest following primary cases at 1.8% (11 studies, N=393). The pooled mean scapular notching rate was 20.1% (12 studies, N=497). Excluding notching, the pooled mean complication rate was 21.5% for all cases and 13% for primary cases (11 studies, N=393). When reported, there was significant improvement in post-operative ROM in all planes. There was also improvement in functional outcome scores, whereby the frequency-weighted mean Constant score increased from 25.9 to 67.2 (8 studies, N=319), ASES score increased from 34.7 to 75.2 (4 studies, N=142), and SST score increased from 2.1 to 7.6 (5 studies, N=196) at final follow up. This review demonstrates that glenoid bone grafting with RSA results in good mid-term clinical and radiographic outcomes. Union rate appears to depend highly on graft type and technique, whereby the highest union rates were seen following the use of autograft bone for the purposes of lateralization. Interestingly, the union rate of autograft bone for the purposes of augmentation in eccentric bone loss is considerably lower and its impact on the long-term survivorship of the implant remains unknown.
Femoral impaction bone grafting (IBG) may be used to restore bone stock in revision total hip arthroplasty (THA) and allow use of a shorter, than otherwise, length prosthesis. This is most beneficial in young patients who are more likely to require further revision surgery. This study aimed to assess the results of femoral IBG for staged revision THA for infection. A prospective cohort of 29 patients who underwent staged revision THA for infection with femoral IBG and a cemented polished double-tapered (CPDT) stem at the final reconstruction was investigated. The minimum follow-up was two years (2 – 10 years, median 6 years). Stem subsidence was measured with radiostereometric analysis. Clinical outcomes were assessed with the Harris Hip, Harris Pain, and and Société Internationale de Chirurgie Orthopédique et de Traumatologie Activity (SICOT) Scores. The original infection was eradicated in 28 patients. One patient required a repeat staged revision due to re-infection with the same organism. At two-year follow-up, the median subsidence at the stem-bone interface was −1.70 mm (−0.31 to −4.98mm). The median Harris Hip Score improved from 51 pre-operatively to 80 at two years (p=0.000), the Harris Pain Score from 20 to 44 (p=0.000) and the SICOT Score from 2.5 to 3 (p=0.003). As successful eradication of infection was achieved in the majority of patients and the stem migration was similar to that of a primary CPDT stem, this study supports the use of femoral IBG during the final reconstruction of the femur after staged revision THA for infection.
Biological repair of acetabular bone defects after impaction bone grafting (IBG) in total hip arthroplasty could facilitate future re-revisions in case of failure of the reconstruction again using the same technique. Few studies have analysed the outcome of these acetabular re-revisions. We analysed 34 consecutive acetabular re-revisions that repeated IBG and a cemented cup in a cohort of 330 acetabular IBG revisions. Fresh-frozen femoral head allografts were morselized manually. All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. The mean follow-up after re-revision was 7.2 years (2–17). Intraoperative bone defect had lessened after the first failed revision. At the first revision there were 14 hips with Paprosky 3A and 20 with Paprosky type 3B. At the re-revision there were 5 hips with Paproky 2B, 21 with Paprosky type 3A and 8 with type 3B. Lateral mesh was used in 19 hips.Introduction
Patients and Methods
Trabecular metal (TM) augments are designed to support an uncemented socket in revision surgery when adequate rim fit is not possible. We have used TM augments in an alternative arrangement, to contain segmental defects to facilitate impaction bone grafting (IBG) and cementation of a cemented socket. However, there is a paucity of literature supporting the use of this technique. We present one of the largest studies to date, reporting early outcomes of patients from a tertiary centre. A single-centre retrospective analytical study of prospectively collected data was performed on patients who had undergone complex acetabular reconstruction using TM augments, IBG and a cemented cup. All patients operated between 2015 and 2019 were included. We identified 105 patients with a mean age of 74yrs. The mean follow-up was 2.3 years(1–5.5yrs). Our primary outcome measure was all-cause revision of the construct. The secondary outcome measures were, Oxford hip score (OHS), radiographic evidence of cup migration/loosening and post-op complications. Eighty-four out of 105 patients belonged to Paprosky grade IIb, IIc or IIIa. Kaplan-Meier survivorship for all-cause revision was 96.36% (CI, 90.58–100.00) at 2 years with 3 failures. Two were due to early infection which required two-stage re-revision. The third was due to post-operative acetabular fracture which was then re-revised with TM augment, bone graft and large uncemented cup. Pre-op and post-op matched OHS scores were available for 60 hips(57%) with a mean improvement of 13 points. Radiographic analysis showed graft incorporation in all cases with no evidence of cup loosening. The mean vertical cup migration was 0.5mm (Range −5 to 7mm). No other complications were recorded. This study shows that reconstruction of large acetabular defects during revision THA using a combination of TM augments to contain the acetabulum along with IBG to preserve the bone stock and a cemented socket is a reliable and safe technique with low revision rates and satisfactory clinical and radiographic results. Long term studies are needed to assess the possibility of preservation and regeneration of bone stock.
This prospective randomized multicenter study compares two methods of bone defect treatment in tibial plateau fractures: a bioresorbable calcium phosphate paste (Alpha-BSM) that hardens at body temperature to give structural support versus Autogenous iliac bone graft (AIBG). One hundred and eighteen patients were enrolled with a 2:1 randomization, Alpha-BSM to AIBG. There was a significant increased rate of non-graft related adverse affects and a higher rate of late articular subsidence (three to nine month period) in the AIBG group. A bioresorbable calcium phosphate material is recommended in preference to the gold standard of AIBG for bone defects in tibial plateau fractures. This prospective randomized multicenter study was undertaken to compare two methods of bone defect treatment: a bioresorbable calcium phosphate paste (Alpha-BSM –DePuy, Warsaw, IN) that hardens at body temperature to give structural support and is gradually resorbed by a cell-mediated bone regenerating mechanism versus Autogenous iliac bone graft (AIBG). One hundred and eighteen adult acute closed tibial plateau fractures, Schatzker grade two to six were enrolled prospectively from thirteen study sites in North America from 1999 to 2002. Randomization occurred at surgery with a FDA recommendation of a 2–1 ratio, Alpha BSM (seventy-eight fractures) to AIBG (forty fractures). Only internal fixation with standard plate and screw constructs was permitted. Follow-up included standard radiographs and functional studies at one year, with a radiologist providing independent radiographic review. The two groups exhibited no significant differences in randomization as to age, sex, race, fracture patterns or fracture healing. There was however, a significant increased rate of non-graft related adverse affects in the AIBG group. There was an unexpected significant finding of a higher rate of late articular subsidence in the three to nine month period in the AIBG group. Recommendations for the use of AIBG for bone defects in tibial plateau fractures should be discouraged in favor of bioresorbable calcium phosphate material with the properties of Alpha BSM. We believe further randomized studies using AIBG as a control group for bone defect support of articular fractures are unjustified. A bioresorbable calcium phosphate material is recommended in preference to the gold standard of AIBG for bone defects in tibial plateau fractures.
Femoral revision after cemented total hip arthroplasty (THA) might include technical difficulties, following essential cement removal, which might lead to further loss of bone and consequently inadequate fixation of the subsequent revision stem. Bone loss may occur because of implant loosening or polyethylene wear, and should be addressed at time of revision surgery. Stem revision can be performed with modular cementless reconstruction stems involving the diaphysis for fixation, or alternatively with restoration of the bone stock of the proximal femur with the use of allografts. Impaction bone grafting (IBG) has been widely used in revision surgery for the acetabulum, and subsequently for the femur in Paprosky defects Type 1 or 2. In combination with a regular length cemented stem, impaction grafting allows for restoration of femoral bone stock through incorporation and remodeling of the proximal femur. Cavitary bone defects affecting the metaphysis and partly the diaphysis leading to a wide femoral canal are ideal indications for this technique. In case of combined segmental-cavitary defects a metal mesh is used to contain the defect which is then filled and impacted with bone grafts. Cancellous allograft bone chips of 2 to 4 mm size are used, and tapered into the canal with rods of increasing diameters. To impact the bone chips into the femoral canal a dummy of the dimensions of the definitive cemented stem is inserted and tapped into the femur to ensure that the chips are firmly impacted. Finally, a standard stem is implanted into the newly created medullary canal using bone cement. To date several studies from Europe have shown favorable results with this technique, with some excellent long-term results reported. Advantages of IBG include the restoration of the bone stock in the proximal femur, the use of standard length cemented stems and preserving the diaphysis for re-revision. As disadvantages of the technique: longer surgical time, increased blood loss and the necessity of a bone bank can be mentioned.
Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement. Between 2005 and 2014, 21 patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all-polyethylene cup was used. Pre-operative diagnosis was aseptic loosening (15 cemented and 6 uncemented). The femoral component was revised in 10 patients. Post-operative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically. One patient had an incomplete post-operative sciatic palsy. After a mean follow up of 47 months (13 to 128) none of the patients required re-revision of the acetabular component. One asymptomatic patient presented with aseptic loosening 9 years post-operatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations. The early and mid-term results of revisions of large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant makes this technique an attractive option for large defects. Longer follow-up is needed to assess survivability.
The technique involves impaction of cancellous bone into a cavitary femur. If segmental defects are present, the defects can be closed with stainless steel mesh. The technique requires retrograde fill of the femoral cavity with cancellous chips of appropriate size to create a new endomedullary canal. By using a set of trial impactors that are slightly larger than the real implants the cancellous bone is impacted into the tube. Subsequent proximal impaction of bone is performed with square tip or half moon impactors. A key part of the technique is to impact the bone tightly into the tube especially around the calcar to provide optimal stability. Finally a polished tapered stem is cemented using almost liquid cement in order to achieve interdigitation of the implant to the cancellous bone. The technique as described is rarely performed today in many centers around the world. In the US, the technique lost its interest because of the lengthy operative times, unacceptable rate of peri-operative and post-operative fractures and most importantly, owing to the success of tapered fluted modular stems. In centers such as Exeter where the technique was popularised, it is rarely performed today as well, as the primary cemented stems used there, rarely require revision. There is ample experience from around the globe, however, with the technique. Much has been learned about the best size and choice of cancellous graft, force of impaction, surface finish of the cemented stem, importance of stem length, and the limitations and complications of the technique. There are also good histology data that demonstrate successful vascularization and incorporation of the impacted cancellous bone chips and host bone. Our experience at the clinic was excellent with the technique as reported in CORR in 2003 by M Cabanela. The results at mid-term demonstrated minimal subsidence and good graft incorporation. Six of 54 hips, however, had a post-operative distal femoral fracture requiring ORIF. The use of longer cemented stems may decrease the risk of distal fracture and was subsequently reported by the author after reviewing a case series from Exeter. Today, I perform this technique once or twice per year. It is an option in the younger patient, where bone restoration is desired. Usually in a Paprosky Type IV femur, where a closed tube can be recreated and the proximal bone is reasonable. If the proximal bone is of poor quality, then I prefer to perform a transfemoral osteotomy, and perform an allograft prosthetic composite instead of impaction grafting, and wrap the proximal bone around the structural allograft. I prefer this technique as I can maintain the soft tissues over the bone and avoid the stripping that would be required to reinforce the bone with struts or mesh. Another indication for its use in the primary setting is in the patient with fibrous dysplasia.
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodelling of the allograft bone by the host skeleton. Historically it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. Generally, the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%. Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2–5 mm, larger chips for the calcar area (6–8 mm), insertion of an intramedullary plug including central wire, 2 cm distal the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressive larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, and insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Post-operative care includes usually touch down weightbearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm. Survivorship with a defined endpoint as any femoral revision after 10-year follow up has been reported by the Exeter group being over 90%, while survivorship for revision as aseptic loosening being above 98%. Within the last years various other authors and institutions reported about similar excellent survivorships, above 90%. In addition, a long-term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years. Impaction grafting might technically be more challenging and more time consuming than cement-free distal fixation techniques. It, however, enables a reliable restoration of bone stock which might especially become important in further revision scenarios in younger patients.